
A Globally Optimal Algorithm for TTD-MDPs

Sooraj Bhat1, David L. Roberts1, Mark J. Nelson1, Charles L. Isbell1, Michael Mateas2

1 College of Computing, Georgia Institute of Technology
2 Department of Computer Science, University of California—Santa Cruz

{sooraj, robertsd, mnelson, isbell}@cc.gatech.edu, michaelm@cs.ucsc.edu

ABSTRACT
In this paper, we discuss the use ofTargeted Trajectory Distribution
Markov Decision Processes(TTD-MDPs)—a variant of MDPs in
which the goal is to realize a specified distribution of trajectories
through a state space—as a general agent-coordination framework.

We present several advances to previous work on TTD-MDPs.
We improve on the existing algorithm for solving TTD-MDPs by
deriving a greedy algorithm that finds a policy that provably min-
imizes the globalKL-divergence from the target distribution. We
test the new algorithm by applying TTD-MDPs todrama manage-
ment, where a system must coordinate the behavior of many agents
to ensure that a game follows a coherent storyline, is in keeping
with the author’s desires, and offers a high degree of replayability.

Although we show that suboptimal greedy strategies will fail
in some cases, we validate previous work that suggests that they
can work well in practice. We also show that our new algorithm
provides guaranteed accuracy even in those cases, with little ad-
ditional computational cost. Further, we illustrate how this new
approach can be applied online, eliminating the memory-intensive
offline sampling necessary in the previous approach.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems—
Games; G.3 [Mathematics of Computing]: Probability and Statis-
tics—Markov processes; J.5 [Computer Applications]: Arts and
Humanities—Fine arts

General Terms
Algorithms, Theory, Performance

Keywords
Markov decision processes, interactive entertainment, convex optimization

1. INTRODUCTION
Multi-agent systems often require coordination to ensure that a

multitude of agents will work together in a globally coherent man-
ner. There are a number of strategies for such coordination, ranging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

from a self-organizing decentralized system to a completely cen-
tralized system where one agent directly controls a set of automa-
tons. We consider the case where agents are mostly autonomous,
but are occasionally given instructions from a central coordinator.
This architecture is a natural fit for a number of domains, including
our motivating domain, drama management in interactive games.

Interactive games are frequently populated by non-player char-
acters (NPCs) that interact with players and are often central to the
storyline. While NPCs ought to be believably autonomous and ap-
propriately interactive, it is extremely difficult for an author to cre-
ate a successful game purely by authoring individual NPCs. The
possible interactions among the NPCs themselves, to say nothing
of the player, are difficult to predict and control in games of any rea-
sonable size. Adrama manageraddresses this problem by acting
as a central point of control, watching the progress of the game and
directing the agents’ activity to ensure a coherent story. While some
drama-management systems control the game’s progress fairly di-
rectly [10, 23, 11], a number take the approach of having mostly
autonomous characters that are sometimes given direction by a cen-
tral coordinator [1, 22, 5, 12, 13, 8, 17].

One line of work [1, 22, 5, 12, 13]—known as declarative opti-
mization-based drama management (DODM)—poses drama man-
agement as an optimization problem. The drama manager has a set
of actions it can take to intervene in the world, and a way of eval-
uating the quality of stories. The optimal actions are the ones that
maximize expected story quality. Although this approach displays
promising results, one problem is that if the drama manager istoo
effective in its task, it may manage to bring about the same opti-
mal story each time, severely limiting replayability. One attempt to
address the problem [12] boosts the rating of stories in which the
player has many opportunities to change the direction of the story.
This approach increases the chances that the player will see a differ-
ent story in repeated plays, at least if she plays differently. On the
other hand, a player who repeats many of the same actions might
notice the same game response, giving the undesirable impression
of a highly predictable game.

A more direct approach is to start with a distribution over possi-
ble stories and optimize the drama manager’s use of actions so that
it comes as close as possible to the target distribution. A frame-
work for addressing this problem isTargeted Trajectory Distribu-
tion Markov Decision Processes(TTD-MDPs). Given an underly-
ing Markov Decision Process (here, an abstract model of the story
space) and a desired distribution over trajectories through its state
space (here, a distribution of stories), a solution to a TTD-MDP is a
stochastic policy that chooses the actions that result in a distribution
of trajectories as close as possible to the target [18].

The original algorithm for solving TTD-MDPs performs quite
well empirically, but suffers from two notable drawbacks. First,

Proceedings of the Sixth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-07).
May 14–18, 2007, Honolulu, Hawai’i, USA.

the solution to a TTD-MDP in any moderately complex domain
requires sampling a tree of possible trajectories. Computing the
full tree may not be feasible. Sampling only a part of the trajectory
space can lead to “falling off” the trajectory space where a policy
has been computed, necessitating some other online solution for
recovery. Second, current solutions seek only to minimize local
policy error at each place where the agent coordinator can take an
action, rather than finding actions that are globally optimal. Worse,
the current solutions do not even provably minimize local error.

Our main contribution in this paper is to show that one can mini-
mize the globalKL-divergence between the target distribution and
the distribution induced by a TTD-MDP policy, using a procedure
that only optimizes locally. We show that the empirical perfor-
mance gain is only minor in our test domains, but the optimal so-
lution can be guaranteed with little additional computational effort.
Using this new procedure, we can also identify conditions under
which one can efficiently compute the global optimum in anon-
line fashion, eliminating the need for memory-intensive sampling.
Thus, we hope that we can apply TTD-MDPs to a larger class of
agent-coordination problems.

In the next sections, we provide a detailed overview of previous
work on both drama management and TTD-MDPs. We then de-
rive theKL-optimal solution to a TTD-MDP and discuss its online
variant. We present an empirical comparison of theKL-optimal
approach with two variants of previous algorithms. Finally, we
conclude by discussing related and future work.

2. BACKGROUND
Here, we describedeclarative optimization-based drama man-

agement(DODM) as well as TTD-MDPs. In describing DODM,
we aim to provide context for the use of TTD-MDPs. In describing
TTD-MDPs, we wish to introduce the technical details necessary
to understand our contribution.

2.1 Drama Management
In DODM, a story is represented as a sequence of discreteplot

points[13]. In this framework, there is adrama manager(DM) that
has a set of requests it can make of non-player characters (NPC)
that are concretely implemented as agents in a game world. The
DM acts as coordinator for the NPC agents.

Plot points represent important events that can occur in the story.
They may involve a player uncovering information, finding an ob-
ject, or moving to a location. Plot points are abstractions of con-
crete events happening in the game world. Finding a safe could
involve a number of concrete actions by a player, such as entering
the room in which it’s located, exploring the room, possibly exam-
ining various objects in the room, searching the bookshelf on the
wall, and finally moving the book behind which the safe is hid-
den. The drama manager does not need to know the details of all
these actions, as most do not impact the progression of the story;
instead, it only senses the abstract plot point. Plot points also have
precedence constraints. For example, the end must occur after the
beginning, and a safe cannot be opened without its key. Note that
not all plot points need occur during any particular game episode.

The set of DM actions is exactly the the set of requests to which
an NPC agent can respond to, as implemented by the game author.
For example, the DM can request an NPC to begin or avoid a con-
versation, request a door to be unlocked or locked, and so on. DM
actions are also abstract and constrained. For example, the DM ac-
tion hint-safe-locationshould not be applied after the safe has been
found. Further,hint-safe-locationmay be realized as an entire se-
ries of concrete actions by an NPC agent (e.g., drawing a player
into a conversation in which a hint may be dropped). Of impor-

1 2

54

7 8 9

Grid World
1

2

3 5

6

5

9

6

99

8

4

6

9

8

9

7

8

9

3

6

Figure 1: A 3×3 gridworld with deterministic actions Rightand
Up, along with the resulting trajectory tree.

tance to the drama manager is theexpected outcomeof taking an
action. Typically, DM actions can take one of three forms:cause,
deny, or hint. A cause action causes its target to happen with prob-
ability 1.0. When a particular plot point is denied by the DM, it is
assumed that it will never happen. When the DM employs a hint
action, the result is a modification of the distribution over player-
caused plot-points toward the plot point that is hinted by the DM.

DODM also requires an author-supplied evaluation function. This
function takes as input the sequence of plot points and history of
DM actions and outputs a quality score. Through this evaluation
function, the author specifies what it means to be a good story. In
practice, the evaluation function is a linear combination of features
over plot point sequences. For example, the author of a mystery
game may assign a higher score to sequences where tension is built
slowly followed by a rapid burst of revelations.

The specific details of how plot points, DM actions, and eval-
uation functions are specified in a concrete game are beyond the
scope of this paper; however, it is important to understand that all
of these components relate directly to the specification of an MDP:
Statescorrespond to sequences of plot points in DODM;Actions
correspond to DM actions;Transitions correspond to a probabilis-
tic user model; andRewardscorrespond to story evaluations.

2.2 TTD-MDPs
A traditional MDP is defined by a tuple(S,A, P, R), whereS

is a set of states,A is a set of actions,P : {S × A × S} → [0, 1]
is a transition function, andR : S → R is a reward function.
The solution to an MDP is a policyπ : S → A. An optimal policy
ensures that the agent receives maximal long-term expected reward.

A TTD-MDP is similarly defined by a tuple(T ,A, P, P (T)),
with statesT that are (possibly partial) finite-length trajectories of
MDP states; a set of actionsA; a transition modelP ; and a target
distribution over complete trajectoriesP (T). The target distribu-
tion in a TTD-MDP replaces the reward function in a traditional
MDP. The solution to a TTD-MDP is a policyπ : T → P (A) pro-
viding a distribution over actions in every state. The optimal policy
results in long-term behavior as close to the target distribution as
possible (we define “closeness” more rigorously later).

Any finite-length discrete-time MDP can be converted to a TTD-
MDP.1 Consider an MDP with a set of statesS and sets of actions
available in each stateAs, the probabilityPi+1(s

′) that the process
is in states′ at timei + 1 is defined recursively by:

Pi+1(s
′) =

X

∀s∈S,a∈As

(P (s′|a, s) · P (a|s) · Pi(s)) (1)

whereP (s′|a, s) is the transition model encoding the dynamics

1Actually, we can solve infinite length TTD-MDPs under certain
conditions; however, this capability has not been necessary for any
of the applications of TTD-MDPs that we have considered so far.

of the world andP (a|s) is the policy under the agent’s control
(usually written asT (s′, a, s) and π(s′, a), respectively). If we
assume (as is commonly done) that the policy is deterministic, we
obtain a common form of Equation 1, rewritten as:Pi+1(s

′) =P
∀s∈S P (s′|π(s), s).
Because in TTD-MDPs we are interested in trajectories, we can

simply consider the history of the MDP states as the TTD-MDP tra-
jectories, resulting in a TTD-MDP where each trajectory represents
a sequence of states in the underlying MDP, optionally including a
history of the actions taken. Dealing with trajectories also means
that the “state” space of the TTD-MDP forms a tree. We can thus
restate Equation 1 for TTD-MDPs:

P (t′) =
X

∀a∈At

(P (t′|a, t) · P (a|t)) · P (t). (2)

In other words, for every trajectoryt′, P (t′|a, t) is nonzero for ex-
actly onet ≺ t′ that is its prefix. This observation follows from
the fact that each trajectory represents a unique sequence of states
s1, . . . , s‖t‖ and therefore has a unique prefix. Thus, the summa-
tion need only account for possible actions taken in the preceding
trajectory rather than actions in multiple MDP states. Because each
trajectory has a fixed length and can therefore appear at only one
specific time, we can drop thei subscripts.

Trajectories represent total history traces of an online decision
making process. Consider Figure 1, a3 × 3 gridworld where there
are two deterministic actions:move right (R)andmove up (U). The
right side of the figure depicts the correspondingtrajectory tree. A
trajectory tree is simply a graphical representation of the valid tra-
jectories and the prefix relationship that governs partial trajectories.

In this example valid trajectories have initial state1 and termi-
nating state9. Let us first consider the partial trajectory1

R
−→ 2. It

is a prefix of two immediate subsequent partial trajectories (1
R
−→

2
R
−→ 3 and1

R
−→ 2

U
−→ 5) as well as three other partial trajectories

and three complete trajectories.
Note that a state in the underlying world may appear multiple

times in the trajectory tree yet participate in distinct trajectories.
Consider both appearances of state 5, for instance. The one on the
left represents the partial trajectory1

R
−→ 2

U
−→ 5 whereas the one on

the right represents the partial trajectory1
U
−→ 4

R
−→ 5; they depict

the same worldstate, but they are differenttrajectoriesbecause the
process arrived to that state along a different path. The power of
considering trajectories rather than states is we can make decisions
based on not only where you are but also how you got there.

To complete the TTD-MDP specification, we need a target dis-
tribution. There are a variety of ways one might imagine deriving
such a distribution; however, in this work we will focus on the case
where a distribution has been pre-specified and may be queried (al-
though we do not assume we can sample from it).

3. MINIMIZING ERRORS IN TTD-MDPS
Unfortunately, it is not always possible to find a stochastic pol-

icy that exactly solves a TTD-MDP. Imagine that for a given tra-
jectory, t′, we have two trajectories we may reach,t1 andt2, and
two actions we may use,a1 anda2. Our target isP (t1) = 1.0 and
P (t2) = 0.0. If botha1 anda2 have non-zero probability of transi-
tioning tot2 from t′ then it is impossible to construct a distribution
over a1, a2 that will yield our desired distribution overt1, t2. In
this section we will review a previous attempt to address this prob-
lem, and derive an algorithm that provably minimizes global error.

3.1 A Previous Attempt
The original formulation of TTD-MDPs used Algorithm 1 to

Algorithm 1 Algorithm to minimize localL1.
1: Build a (complete if possible) tree of trajectories. If a complete tree is

not possible, sample the tree from the target distribution.
2: Initialize each leaf node (complete trajectory) with its target probability

P (t).
In reverse topological order:

3: for Everyt do
4: for Every childt′i of trajectoryt do
5: Condition Equation 2 ont:

P (t′i|t) =
X

∀a∈At

(P (t′i|a, t) · P (a|t))

6: end for
7: This forms a system of|Tt′

i

| linear equations in|At| unknowns:

~P (t′i|t) = ~P (t′i|a, t) · ~πt

which can be solved forπ using standard linear algebra.
8: end for

action 1action 2

action 3

(a) Symmetric Case
action 1action 2

action 3

(b) Asymmetric Case

Figure 2: Geometric view of the normalization procedure.

construct a policyπt(a) = P (a|t) for every partial trajectory in
T . When an exact solution exists, the algorithm will return an opti-
mal policy; however, when this is not possible, undesirable behav-
ior can result. For example, consider a partial trajectoryt′, three
subsequent trajectoriest1, t2, t3 and three actionsa1, a2, a3 whose
linear system is defined by:

2
4

0.0
0.3333
0.6667

3
5 =

2
4

0.5 0.5 0.0
0.0 0.5 0.5
0.5 0.0 0.5

3
5 · ~πt (3)

The solution vector

~πt =

2
4

0.3333
−0.3333
1.0000

3
5

does not represent a probability distribution.
While this solution is not a vector of probabilities, it does have

an interpretation: achieving the desired distribution requires thata2

be “undone” some percentage of the time. Because that is impossi-
ble, the original algorithm replaces any negative values with zeros,
renormalizing the resulting vector to create a distribution.

The procedure is an attempt to quickly minimize theL1 error
measured over‖bY − Y ‖1 = ‖~P (ti|a, t) · bπt − Y ‖1 where bY is
the distribution of trajectories for a particular choice of policybπt

andY is the desired distribution. Although the procedure performs
well empirically, it is not guaranteed to minimizeL1 error.

Figures 2(a) & 2(b) illustrate why. These figures provide a geo-
metric interpretation of the normalization step. The solution space
to the linear system lies somewhere on a hyperplane constrained
by the transition matrix. Because we want the solution to be prob-

abilities, the region of valid solutions on this hyperplane must lie
somewhere between 0 and 1 on each of the axes. In the case pre-
sented in Equation 3, we have a situation where the probability
restriction is not met. This is depicted in the figures by the green
hexagon farthest to the right. In Figure 2(a) we depict a situation
where symmetry in the transition matrix results in an optimal solu-
tion and in Figure 2(b) we depict a situation where this symmetry
does not exist. The normalization procedure is represented by the
dashed blue line from the solution dot to the action which received
negative mass. The intuition here is that by assigning zero mass to
the action whose solution is negative and normalizing we are main-
taining the probabilities of the other two actions in the same relative
proportion. On the other hand, the optimal solution is the point in
the valid region of the hyperplane that is closest to the actual so-
lution (i.e. lies on a perpendicular line from the boundary of the
hyperplane to the solution point). This optimal result is depicted
by the yellow square that lies on the hyperplane boundary. The
optimal answer is depicted by the blue arrow. Note that in the sym-
metric case, the location of the optimal solution and the normalized
solution are the same. In the asymmetric case, the location of the
normalized solution does not coincide with the optimal solution.

To achieve true local optimality, it is necessary to solve a con-
strained optimization of theL1 error. The objective function is:

min
~πt

‖~P (t′i|t) − ~P (t′i|a, t) · ~πt‖1 (4)

subject to
P

a
πt(a) = 1 and0 ≤ πt(a) ≤ 1. Standard tech-

niques exist to reduce this objective function to a constrained linear
program [2]. This optimization procedure replaces Step 7 in Algo-
rithm 1 and is guaranteed to minimizelocal L1 error.

3.2 A KL-optimal Algorithm
Although we now have a procedure to minimize localL1 error,

no guarantees can be made regarding global error. In this section,
we present an algorithm for solving TTD-MDPs based on minimiz-
ing theKullback Liebler divergence. TheKL-divergence between
two probability distributionsp(x) andq(x) is defined as:

DKL(p‖q) =
X

x

p(x) log
p(x)

q(x)
(5)

=
X

x

p(x) log p(x) −
X

x

p(x) log q(x) (6)

KL-divergence is not a true distance, as it is asymmetric; however,
it is a well-understood measure with several important properties.
In particular, it is consistent, always non-negative and zero only
whenp and q are equal. If we think ofp as a base distribution
thenDKL measures how wellq approximates it, by measuring the
entropy that remains inq. In our case,p is the target distribution
andq is our approximation of it. In TTD-MDPsq is:

q(τ) =
Y

t�τ

w(t) (7)

where w(t′) =
X

a

P (t′|a, t) · πt(a) (8)

Here, τ represents complete trajectories whilet and t′ are (par-
tial or complete) trajectories. The probabilityw(t′) represents the
frequency with whicht′ is targeted when the process is att. It com-
bines information about the probabilistic policy and world dynam-
ics att. Thus, the product of these one-step transition frequencies,
w(t′), yields the probability of a complete trajectory,q(τ). Our

objective function for optimization then becomes:

max
π

X

τ

p(τ) log q(τ) = max
π

X

τ

p(τ) log
Y

t�τ

w(t)

= max
π

X

τ

p(τ)
X

t�τ

log w(t)

= max
π

X

τ

X

t�τ

p(τ) log w(t)

Note that a partial trajectoryt contributesp(τ) log w(t) to the sum
for each complete trajectoryτ for which it is a prefix. We can
define a function over complete trajectories summarizing the factor
of log w(t) that t contributes,m(t) =

P
t�τ

p(τ). Our objective
function is then:

max
π

X

t

m(t) log w(t) (9)

Note thatm(t) represents the total probability mass contained in
the subtree rooted att. Now, obtaining the optimal policy is simply
a matter of performing anargmaxπ on the objective function.

Having summarized and isolated the contribution of an individ-
ual trajectoryt′ to the objective, we could proceed using a naive
approach and optimize for each trajectory independently, thus op-
timizing their sum; however, this procedure ignores the fact that
optimizing for one trajectory may come at the cost of sacrificing
the optimality of a sibling trajectory. Fortunately, optimizing for a
trajectoryt′ is only constrained by the optimization of its sibling
trajectories, and no others because the local stochastic policy must
satisfy a sum-to-one constraint. This insight enables us to con-
sider trajectories by groups of siblings—precisely the same group-
ing used by the earlier approach that sought to minimize localL1

error. Fortunately, we have two distinct advantages: 1) the groups
of siblings can be solved for inanyorder (there is no restriction that
you must start with the leaves and work towards the root); and 2)
solving the local optimizations is guaranteed to produce the glob-
ally optimal setting of the parameters. The local optimization is:

argmax
πt

X

t→t′

m(t′) log w(t′) (10)

= argmax
πt

X

t→t′

m(t′) log
X

a

P (t′|a, t) · πt(a) (11)

where we have usedt → t′ to indicate thatt′ is a child oft. This
objective is convex, so Equation 10 can be solved using a standard
technique for constrained convex optimization [2]. Thus, we yield
aKL-optimal offline algorithm by replacing Step 7 of Algorithm 1
with this localKL-based optimization.

One potential problem arises whenq(τ) is forced to be zero for a
complete trajectoryτ with p(τ) 6= 0. This occurs when no actions
available at a trajectoryt will move us to a childt′, i.e.w(t′) = 0.
DKL(p‖q) is undefined due to the division by zero. Thus all pos-
sible approximations seem equally bad, preventing us from making
progress towards a solution. Luckily, this problem can be elimi-
nated by preprocessing and reformulating each local optimization
to eliminate child trajectoriest′ that can never be reached. Intu-
itively, t′ should not be represented in the trajectory tree if it cannot
ever be reached fromt. In fact, in most domains (including all of
the domains we have used) this issue does not arise at all because
of the process by which the trajectory trees are generated.

3.3 An Online Algorithm
We now describe how this approach can be applied in an on-

line fashion, eliminating the need for the potentially costly offline
sampling step employed by earlier techniques. For example, in the

drama management domain, it would be undesirable to have to con-
struct extremely large trajectory trees on the player’s machine.

As formulated, we requirem(t) to be available for each local
optimization. The requirement is actually weaker—all that is nec-
essary is a function that, for a given parent trajectoryt, gives the
relativemasses required for each child oft.

Below we derive an online algorithm whenm(t) can be com-
puted quickly; however, we note that even whenm(t) cannot be
computed efficiently, the resource requirements of theKL-based
offline algorithm are no worse than in previous work. By process-
ing the trajectories in the same order as before (i.e. propagating
upwards from the leaves) we are still able to calculate them(t)
values as we need them, because of the following properties:

m(t) =
X

t→t′

m(t′) (12)

m(τ) = p(τ) (13)

which follow from the definition ofm(t). In the event that the
whole trajectory tree does not fit into memory, we can employ the
same sampling technique used in the earlier approach.

To derive the online algorithm, one only needs to recall that we
achieve the globallyKL-optimal solution regardless of the order
in which we perform the local optimizations. One could start by
processing the root of the trajectory tree, then process the children
of the root, and so on, to compute a policy for each node in the tree.
If m(t) can be computed efficiently (or in the background), then
we can do even better by only solving the local optimizations that
we encounter during an episode. This is done by interleaving the
local optimization steps with taking actions in the world—the lo-
cal optimization tells us how to take the next action, and the action
places us at a new node in the trajectory tree. Thus, we only solve
the local optimization for trajectories we actually encounter along a
particular trajectory (root-to-leaf path in the trajectory tree), rather
than all optimizations in the trajectory tree. In terms of number
of optimizations to solve, we never do worse than the previous ap-
proach (as the size of any trajectory is bounded by the size of the
tree), and typically we will do much better—for a fairly balanced
and complete tree with heighth and branching factorb, a trajectory
will have sizeh whereas the tree will have size roughly equal tobh.

Algorithm 2 Online algorithm to minimize globalKL error.
1: t← start state
2: while t is not a complete trajectorydo
3: Compute the optimal local stochastic policyπ∗

t :

π∗
t = argmax

πt

X

t→t′

m(t′) log
X

a

P (t′|a, t) · πt(a)

4: Sample an actiona from π∗
t .

5: Take actiona in the world, which will transition probabilistically to
a new trajectoryt′ according toP (t′|a, t).

6: t← t′

7: end while

Note there is no free lunch: without extra information about the
nature of the trajectories or the analytic structure ofp(τ), we are
still limited by the complexity of the summation to computem(t)
from the tree. Below we briefly discuss a few approaches to make
the online algorithm feasible.

First, we could requirem(t) to be of a certain easily computable
form. Specifically, we could require thatp(τ) be constructed in
such a way so thatm(t) can be computed solely from a partial tra-
jectory t. Consider a simple game exactly 10 plot points in length
and with a fixed branching factor. Suppose we would like a drama

manager to target only stories that contain a certain plot pointA

with uniform probability. Given a partial trajectoryt, we can tell
whether or notA has occurred through simple inspection. IfA

has occurred, we know that all complete trajectories subsequent
to t will have non-zero mass. Thus, via a counting argument, we
can efficiently determinem(t). If A has notoccurred, because all
stories occur with uniform probability, we can employ a combina-
torial argument to calculate the number of subsequent trajectories
that containA. The applicability of this authorial idiom to drama
management is the subject of ongoing research.

Another approach is to useonline sampling. An estimatem̂(t)
of m(t) can be computed by constructing an approximate trajec-
tory tree built from simulated complete trajectories collected in a
background thread. This approach leverages the fact thatm̂(t) only
needs to providerelative values. As such, the samples need only
provide a good representation of the space, rather than provide a
perfect estimate ofm(t). Initial experiments on this approach are
promising.

4. RESULTS
In this section, we present results that examine the solution qual-

ity and performance characteristics of the proposed algorithm ver-
sus the previous algorithm as well as a baseline algorithm.

4.1 Solution Quality
To verify that theKL approach performs well in practice, we ran

experiments on a synthetic grid world and on the drama manage-
ment MDP studied in [13]. The synthetic grid world is the same
discussed in Section 2.2 and shown in Figure 1. As a reminder,
there are at most two actions in every state (“move right” and “move
up”) and a known transition modelP (s′|a, s).

For each trial we selected a given complete trajectoryτ with
probability δ. Each selected trajectory was given uniform target
probability and the remainder given zero target probability. We
varied δ from 0.05 to 1.0. We then built the tree and computed
the policy according to the localL1 approach, the localKL ap-
proach, and a simple algorithm that implements a uniform policy.
We varied the size of the grid from 5×5 to 9×9. For each set of
parameters, we ran 10 trials and averaged the results.

The results are presented in Figure 3. As the percentage of tra-
jectories targeted increases, bothL1 andKL error decrease. This
is expected, as any nondeterminism in action outcomes can result
in a terminal trajectory with zero desired probability, so reducing
the number of zero mass terminal trajectories reduces error. Note
that the localL1 andKL approaches perform nearly identically.
As expected, the baseline algorithm does far worse than the other
two, thus showing that at least the domain is not trivial.

To test on a computationally intractable problem, we used a ver-
sion of theAnchorheadstory previously explored using reinforce-
ment learning [13]. In our model,Anchorheadhas 29 plot points
and 90 drama manager actions. The evaluation function is a com-
bination of features, such as the spatial locality of action, having
plot points occur in an order that motivates later events, and so on;
more details on the general framework and evaluation functions are
given by Nelson & Mateas [12].

To evaluate the effect of a drama manager, we run simulated sto-
ries and plot a distribution of story qualities. The drama manager’s
goal is to increase the frequency of highly-rated stories and de-
crease the frequency of low-rated stories. In particular, we would
prefer that very low-rated stories never happen, while achieving a
good distribution over highly-rated stories. We use the evaluation
function and these preferences to define a TTD-MDP: any trajec-
tory of plot points that evaluates below a threshold has a target fre-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L1
 e

rr
or

Percent of Trajectories Targeted

Uniform action policy
Old algorithm

New algorithm

(a) Plot ofL1 error

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K
L

di
ve

rg
en

ce

Percent of Trajectories Targeted

Uniform action policy
Old algorithm

New algorithm

(b) Plot ofKL error

Figure 3: Error plots for the 9 ×9 grid world. The old and new methods perform nearly identically, thustheir plots overlap. The
maximum difference between the two w.r.t.L1 error is 2.48× 10−6; w.r.t. KL error, 9.17× 10−9. The uniform action policy is much
worse in all case, by both measures.

quency of 0, while those above the threshold should all appear, with
the highly-rated ones more likely.

We build a sampled trajectory tree to both estimatem(t) by sum-
mation and to solve for the TTD-MDP policy. Unfortunately, dur-
ing evaluation or actual gameplay, it is often the case that nondeter-
minism in our player model causes us to encounter story trajecto-
ries not in the tree. In this event, the fallback policy for the drama
manager is to take no action for the remainder of the game. We opt
to ignore the recovery mechanism considered by Robertset al.[18]
in favor of a “pure” comparison of the optimization methods.

Again, the results for the old and new algorithm were nearly
indistinguishable, consistent with what we observed with the grid
world. It is possible, however, to construct cases wheread hoclo-
cal optimization fails. The following examples use 3 actions and 3
successor states. We will usel1-sub to refer to the previous, subop-
timal matrix-based solution;l1-opt to refer to the correctL1-based
solution outlined in Equation 4; andkl-opt to refer to theKL-
based algorithm presented in this paper. We present the results of
the three approaches on two pathological examples in Figure 4.

In the first example (Figure 4(a)),kl-opt does better thanl1-sub
w.r.t. L1 error. In fact, the difference inL1 error between the two
is 0.5, which is 25% of the maximum possibleL1 error (2.0). In
the second example (Figure 4(b)), thoughkl-opt cannot beatl1-opt
w.r.t.L1 error (by definition), itdoesdo better than bothl1-opt and
l1-subw.r.t. KL error and does equally as well onL1 error.

In both examples, the local transition matrix makes it very diffi-
cult to reach the target distribution. The first row of the first transi-
tion matrix contains relatively large numbers compared to the target
probability mass for the first row of the target probability vector. A
similar situation occurs in the second example.

In the real-world domains we have examined, this situation does
not seem to arise often. It could be that any local technique that at-
tempts to match the local target distribution according to a reason-
able error measure will perform quite well in practice on the sorts
of problems we have explored; however, many such techniques will
fail in exactly the difficult cases. By contrast, we have derived an
algorithm that provides theoretical guarantees and, as we shall see,
remains computationally feasible even within the performance con-
straints of an interactive drama management system.

4.2 Execution Time
Given that both the theoretically grounded technique and the un-

grounded technique perform similarly in the types of domains we
have studied, we seek to characterize the computational tradeoffs
that are made when one algorithm is used over the other. The fol-

lowing experiments were run on an Intel Pentium Xeon Processor
at 3.8GHz with a 2,048 KB cache and 8GB of RAM (although only
1GB was allocated to the Java 1.5.0server JVM).

First, we examine the runtime ofl1-sub, kl-opt and a uniform
random policy on the grid world domain. Table 1 contains the re-
sults of those experiments. Note the rapid growth in running time
for all of the approaches. This is due to the exponential increase in
trajectory tree size as the size of the grid world increases. Specifi-
cally, for ann×n grid world, there are (2n−2)!

(n−1)!(n−1)!
= O(n!) local

optimizations to be solved. In the case ofl1-sub, each of the local
computations involves solving a system of linear equations, which
can be accomplished relatively efficiently—O(a3) for a naive im-
plementation wherea is the number of actions. On the other hand,
thekl-opt technique requires a polynomial number of steps.2

Total time (ms) Normalized time (ms)
Size uni l1-sub kl-opt uni l1-sub kl-opt
5× 5 1.90 2.58 76.88 0.0271 0.0369 1.0983
6× 6 7.22 8.10 233.16 0.0287 0.0321 0.9252
7× 7 34.30 34.52 840.48 0.0371 0.0374 0.9096
8× 8 161.02 167.50 3191.48 0.0469 0.0488 0.9299
9× 9 769.06 789.70 12119.28 0.0598 0.0614 0.9417

Table 1: Average computation time for the uniform baseline,
l1-opt, and kl-opt algorithms for various grid sizes.

As shown in Table 1, the run time for thekl-opt approach is sig-
nificantly higher. To examine this effect more closely, consider the
second column, which presents the normalized computation time
(i.e. time per local optimization). Note how for thekl-opt ap-
proach, the normalized running time remains essentially constant
for all grid sizes. However, for the baseline and thel1-sub ap-
proach, the normalized run time jumps significantly for the largest
grid size (marked in bold in the table). We attribute this to cache
misses. The increased time required per computation for thekl-opt
approach hides the latency encountered for a cache miss.

Although kl-opt requires roughly thirty times the computation
than l1-sub per decision point, we are well under what is neces-
sitated by the domain; other researchers have allocated as much
as twosecondsbetween decision points for the drama manager to
select an action. These results indicate that the localkl-opt ap-
proach can execute in less than a millisecond, easily meeting the

2The polynomial is a function of a number of parameters of the
optimization and the condition number of the objective function’s
Hessian. A complete analysis is beyond the scope of this paper.

Equation:

2

4

0.0027

0.3586

0.6388

3

5 =

2

4

0.7432 0.2535 0.5272

0.1626 0.2175 0.2172

0.0942 0.5290 0.2556

3

5 · ~πt

Method: l1-sub l1-opt kl-opt
L1 error: 1.0491 0.5017 0.5017

KL error: 0.7507 0.2875 0.2875

Solution vector:

0

@

0.0

0.0

1.0

1

A

0

@

0.0

1.0

0.0

1

A

0

@

0.0

1.0

0.0

1

A

(a) Example 1

Equation:

2

4

0.4177

0.2182

0.3640

3

5 =

2

4

0.1130 0.0025 0.0085

0.6178 0.5717 0.5559

0.2692 0.4258 0.4356

3

5 · ~πt

Method: l1-sub l1-opt kl-opt
L1 error: 0.8037 0.7286 0.7991

KL error: 1.1039 0.6444 0.4288

Solution vector:

0

@

0.0709

0.0

0.9291

1

A

0

@

0.4304

0.0

0.5697

1

A

0

@

1.0

0.0

0.0

1

A

(b) Example 2

Figure 4: Two pathological examples where there is a quantifiable difference between the results of the three optimization approaches.
The tables contain the equations that represent the local optimization, the solution vector found by each of the three methods, and
the error associated with each of the solution vectors.

constraints of a real-time interactive drama management system.
Further, this approach retains is optimal properties even when used
online, so the increased time per local computation is only a linear
penalty in practice.

5. RELATED WORK
The inspiration for this work is drawn from two fields: drama

management and Markov decision processes.

Drama Management.Using a drama manager to guide interactive
entertainment was first proposed in 1986 by Laurel [6]. The partic-
ular formalism based on plot points, DM actions, and an evaluation
function that we use was proposed assearch-baseddrama manage-
ment (SBDM) by Bates [1]. There are other drama-management
approaches: Mateas & Stern use abeat-baseddrama manager [10];
Mott & Lester use a decision-theoretic planner for their drama man-
ager [11]; Younget al. use a goal-based planning drama man-
ager [23]; and Magerko uses an architecture called IDS based on a
“playwriting expert system” [8]. For a somewhat dated description
of drama management techniques see Mateas’ 1999 survey [9].

The SBDM formulation of the drama-management problem was
posed as an optimization problem to be solved using a minimax
game-tree-like search. It was studied extensively in the 1990s by
Weyhrauch [22]. Weyhrauch discovered that full-depth search was
intractable for any reasonable problem and proposed SAS+, a tech-
nique that used static evaluation sampling.

Lamstein & Mateas proposed reviving the technique in 2004 [5]
but later work by Nelson & Mateas showed that the approach did
not scale to other story worlds. This result led to the develop-
ment of DODM [13] where the sampling search was replaced with
reinforcement-learning in the spirit of Tesauro’s TD-Gammon [20,
19, 21]. Finally, Robertset al. developed TTD-MDPs to address
the issue of replayability through variety of experience [18].

TTD-MDPs. The formulation of TTD-MDPs as optimizing a prob-
abilistic policy was inspired by a number of works from the MDP
community. Specifically, Isbellet al. [3] developedCobot, a so-
cial reinforcement-learning agent. In that work, Cobot was tasked
with random action selection during episodes of user interaction.
Cobot had “internal” models of user preferences represented by
state-action Q-values that were used to induce a distribution over
actions. This distribution results in action selection roughly pro-
portional to user satisfaction but does not allow the targeting of
specific distributions over actions or actions sequences.

Kearns, Mansour, & Ng [4] developed a method for approximate
planning in POMDPs based on a sampled “trajectory tree”. The
concept of a sampled trajectory tree in that work differs from ours.
Their trajectory trees are sampled from a generative model of ob-
servations and transitions and represent a single episode. Multiple

trees are then combined to create estimated values for particular ac-
tions. In our case, the trajectory tree is sampled uniformly from the
state of possible trajectories and represents possible paths through
the space—not a single estimated path based on observations.

Littman [7] uses Markov games as a framework for exploring
reinforcement learning in the presence of multiple adaptive agents.
Our formulation of TTD-MDPs is similar in that it acknowledges
a source of randomness outside the environment itself, finding a
solution that requires a probabilistic policy. On the other hand, this
work was not directly concerned with distributions over outcomes,
and assumed a zero-sum game. In the formulation of the drama-
management problem, the game is not zero-sum: the player and the
drama manager are, in effect, playing completely different games.

Lastly, if we think of TTD-MDPs as modeling the dynamics
of an MDP while holding non-traditional elements fixed, we find
common ground with recent work in inverse reinforcement learn-
ing (IRL) [14] and extended Markov tracking (EMT) [15, 16]. In
IRL, the goal is to observe the policy of an agent and infer a re-
ward function that would lead to its behavior. In the drama man-
agement case, non-determinism arises from both the user and DM
actions. If we think of the desired distribution as fixed, then the
non-determinism that is not explained by the user model is exactly
the distribution over our own actions. Similarly, in EMT, the goal
is to select the optimal system dynamics (i.e. probability of state
given another state) given a sequence of observations in a partially
observable environment. Once the optimal dynamics have been
identified, the task becomes the probabilistic selection of an action
from a distribution that fits the desired dynamics.

6. CONCLUSIONS AND FUTURE WORK
Targeted Trajectory Distribution Markov Decision Processesare

well-suited to be a framework for centrally coordinating multia-
gent systems, especially in cases where reusability of the system is
important, such as interactive games. In this paper, we have iden-
tified some shortcomings of previous TTD-MDP algorithms, and
derived a new algorithm that minimizes globalKL-divergence. In
addition, we discussed the conditions that enable efficient online
variations of the algorithm.

As the probability distribution is of central importance to a good
TTD-MDP-based system, it is necessary to make it easy for design-
ers to specify target distributions. This can take a number of dif-
ferent directions. When converting from an optimization-based co-
ordinator to a TTD-MDP-based one, a natural approach is to make
the distribution be some function of the evaluation function as we
have done; however, writing an evaluation function may not always
be easy, and the distribution induced from one may not lead to the
distribution the designer really intended. Thus, we are interested in
pursuing methods for preference elicitation.

Acknowledgments
This research was performed while on appointment as a U.S. De-
partment of Homeland Security (DHS) Fellow under the DHS Schol-
arship and Fellowship Program, a program administered by the
Oak Ridge Institute for Science and Education (ORISE) for DHS
through an interagency agreement with the U.S Department of En-
ergy (DOE). ORISE is managed by Oak Ridge Associated Uni-
versities under DOE contract number DE-AC05-06OR23100. All
opinions expressed in this paper are the author’s and do not nec-
essarily reflect the policies and views of DHS, DOE, or ORISE.
We also acknowledge the support of DARPA under contract No.
HR0011-06-1-0021 and of NSF under the Graduate Research Fel-
lowship Program.

7. REFERENCES
[1] J. Bates. Virtual reality, art, and entertainment.Presence:

The Journal of Teleoperators and Virtual Environments,
2(1):133–138, 1992.

[2] S. Boyd and L. Vandenberghe.Convex Optimization.
Cambridge University Press, 2004.

[3] C. L. Isbell, Jr., C. R. Shelton, M. Kearns, S. Singh, and
P. Stone. A social reinforcement learning agent. In
Proceedings of the Fifth International Conference on
Autonomous Agents (Agents-01), pages 377–384, 2001.

[4] M. Kearns, Y. Mansour, and A. Y. Ng. Approximate planning
in large POMDPs via reusable trajectories.Advances in
Neural Information Processing Systems, 12, 2000.

[5] A. Lamstein and M. Mateas. A search-based drama manager.
In Proceedings of the AAAI-04 Workshop on Challenges in
Game AI, 2004.

[6] B. Laurel.Toward the Design of a Computer-Based
Interactive Fantasy System. PhD thesis, Drama department,
Ohio State University, 1986.

[7] M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. InProceedings of the
Eleventh International Conference on Machine Learning
(ICML-94), pages 157–163, 1994.

[8] B. Magerko. Story representation and interactive drama. In
Proceedings of the First Annual Conference on Artificial
Intelligence and Interactive Digital Entertainment
(AIIDE-05), 2005.

[9] M. Mateas. An Oz-centric review of interactive drama and
believable agents. In M. Woodridge and M. Veloso, editors,
AI Today: Recent Trends and Developments. Lecture Notes
in AI 1600. Springer, Berlin, NY, 1999. First appeared in
1997 as Technical Report CMU-CS-97-156, Computer
Science Department, Carnegie Mellon University.

[10] M. Mateas and A. Stern. Integrating plot, character, and
natural language processing in the interactive drama Façade.
In Proceedings of the 1st International Conference on
Technologies for Interactive Digital Storytelling and
Entertainment (TIDSE-03), 2003.

[11] B. Mott and J. Lester. U-director: A decision-theoretic
narrative planning architecture for storytelling environments.
In Proc. of the Fifth Intl. Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-06), 2006.

[12] M. J. Nelson and M. Mateas. Search-based drama
management in the interactive fiction Anchorhead. In
Proceedings of the First Annual Conference on Artificial
Intelligence and Interactive Digital Entertainment
(AIIDE-05), 2005.

[13] M. J. Nelson, D. L. Roberts, C. L. Isbell, Jr., and M. Mateas.
Reinforcement learning for declarative optimization-based
drama management. InProceedings of the Fifth
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-06), 2006.

[14] A. Y. Ng and S. Russell. Algorithms for inverse
reinforcement learning. InProceedings of the Seventeenth
International Conference on Machine Learning (ICML-00),
pages 663–670, 2000.

[15] Z. Rabinovich and J. S. Rosenschein. Multiagent
coordination by extended Markov tracking. InProceedings
of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-05), pages
431–438, 2005.

[16] Z. Rabinovich and J. S. Rosenschein. On the response of
EMT-based control to interacting targets and models. In
Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-06),
2006.

[17] M. O. Riedl, A. Stern, and D. Dini. Mixing story and
simulation in interactive narrative. InProceedings of the
Second Annual Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE-06), 2006.

[18] D. L. Roberts, M. J. Nelson, C. L. Isbell, Jr., M. Mateas, and
M. L. Littman. Targeting specific distributions of trajectories
in MDPs. InProceedings of the Twenty-First National
Conference on Artificial Intelligence (AAAI-06), Boston,
MA, 2006.

[19] G. Tesauro. TD-Gammon, a self-teaching backgammon
program, achieves master-level play. Unpublished. URL:
http://web.cps.msu.edu/rlr/pub/Tesauro2.html.

[20] G. Tesauro. Practical issues in temporal difference learning.
Machine Learning, 8:257–277, 1992.

[21] G. Tesauro. Temporal difference learning and TD-Gammon.
Communications of the ACM, 38(3):58–68, 1995.

[22] P. Weyhrauch.Guiding Interactive Drama. PhD thesis,
School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, 1997. Technical Report CMU-CS-97-109.

[23] R. M. Young, M. O. Riedl, M. Branly, A. Jhala, R. J. Martin,
and C. J. Saretto. An architecture for integrating plan-based
behavior generation with interactive game environments.
Journal of Game Development, 1(1), 2004.

