
Targeting Specific Distributions of Trajectories in MDPs∗

David L. Roberts1, Mark J. Nelson1,
Charles L. Isbell, Jr.1, Michael Mateas1, Michael L. Littman2

1 College of Computing, Georgia Institute of Technology, Atlanta, Georgia, USA
2 Department of Computer Science, Rutgers University, Piscataway, New Jersey, USA
{robertsd, mnelson, isbell, michaelm}@cc.gatech.edu, mlittman@cs.rutgers.edu

Abstract

We define TTD-MDPs, a novel class of Markov deci-
sion processes where the traditional goal of an agent is
changed from finding an optimal trajectory through a
state space to realizing a specified distribution of tra-
jectories through the space. After motivating this for-
mulation, we show how to convert a traditional MDP
into a TTD-MDP. We derive an algorithm for finding
non-deterministic policies by constructing a trajectory
tree that allows us to compute locally-consistent poli-
cies. We specify the necessary conditions for solving
the problem exactly and present a heuristic algorithm
for constructing policies when an exact answer is im-
possible or impractical. We present empirical results
for our algorithm in two domains: a synthetic grid
world and stories in an interactive drama or game.

Introduction
In many interesting real-world problems, the path that
you take to the goal is as important as whether or not
you get there. Consider the problem of drama manage-
ment in game worlds. The subjective qualities of a story
are determined not just by its ending, but by the entire
trajectory of story events. The goal here is to guide
a player through a space of possible story trajectories
that are consistent with the author’s intent while still
preserving as much player autonomy as possible. The
story trajectory is a function of both the player’s ac-
tions and the drama manager’s reconfigurations of the
story world. The author prefers some story lines to oth-
ers; additionally, the player will want to play the game
or participate in the interactive drama more than once.
Variety of experience becomes crucial for replayability,
therefore, a formulation of this as an optimization prob-
lem in story space is inadequate since it will tend to
prefer a specific trajectory. Instead, we propose posing
this as the problem of learning a stochastic policy that
matches a desired probability distribution over stories.

∗This research was supported by graduate research fel-
lowships from the Department of Homeland Security and
the National Science Foundation and by a grant from the
Intel Foundation.
Copyright c© 2015, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

We call this optimization problem a targeted trajectory
distribution MDP (TTD-MDP).

Although we focus on drama management, our for-
mulation applies to a variety of tasks, including agents
in online games, virtual tour guides, and robotic en-
tertainers, where in contrast to traditional goal-based
systems, the path from start to goal is what defines the
quality of the solution. In general, whenever an intel-
ligent agent is expected to produce a variety of expe-
riences in the face of a variety of users (or the same
user multiple times), we believe that TTD-MDPs are a
useful characterization of its task.

In the remainder of this paper, we formally derive
TTD-MDPs and optimality criteria. We show how to
compute exact optimal policies when possible and in-
troduce an algorithm applicable when an exact solution
is either impossible or impractical. Lastly, we verify our
methods empirically by presenting results on both an
artificial grid world and on an instance of a significantly
larger drama-management MDP.

Motivation: Drama Management
As noted above, our derivation of TTD-MDPs is
inspired by the growing body of work in drama
management and related areas. Bates’ (1992) and
Weyhrauch’s (1997) approach to this problem is based
on plot points, actions provided to the drama manager
(DM), and a story-evaluation function. Plot points are
abstract representations of story events (such as the
player finding an object or receiving some important in-
formation), annotated with information useful in evalu-
ation and prerequisites specifying valid orders; DM ac-
tions are specific ways the drama manager can intervene
in the story (e.g. by having a computer-controlled char-
acter walk up to the player and start a conversation);
and the evaluation function, provided by the author,
rates the quality of completed stories, taking into ac-
count trajectories that consist of the sequence of both
plot points and DM actions.

Treated as a traditional optimization problem, the
goal of a drama manager is to optimize the use of
available DM actions in response to a player’s actions,
given the set of plot points and an evaluation function.
We previously modeled this as a reinforcement learning

David L. Roberts, Mark J. Nelson, Charles L. Isbell, Michael Mateas, and Michael L. Littman (2005). Targeting specific
distributions of trajectories in MDPs. In Proceedings of the 21st National Conference on Artificial Intelligence,
pp. 1213–1218.



(RL) problem (Nelson et al. 2006) where the goal is to
learn a policy that, given a world modeled by states and
a transition function, specifies an action to take in each
state in a manner that maximizes the expected value
of the story-evaluation function. In this case, state is
specified by the sequence of plot points and DM actions
that have happened so far; actions are the DM actions
(including doing nothing); transitions are the likelihood
of plot points occurring in any given state, and are given
by the combination of prerequisites for a plot point, the
player, and any influence from drama-manager actions;
and the evaluation function is the one provided by the
author.

While this approach has proven promising, it is clear
that it has its limitations. Specifically, if there is a
policy that allows the drama manager to guide the
player to the same highly-rated story every time, the
RL process will consider that an effective solution even
though this limits replayability. Any distribution over
good outcomes is an artifact of the stochasticity intro-
duced by the user rather than the result of reinforce-
ment learning. As such, it becomes difficult to optimize
for the distribution.

Rather than attempting to maximize any given
episode, the goal should be to maximize long-term en-
joyment by achieving a target distribution over highly-
rated episodes. In other words, one should learn a
stochastic policy that produces a distribution over ac-
tions rather than a policy that chooses a specific action.

TTD-MDPs
A typical MDP is defined by a tuple (S,A, P,R), where
S is a set of states, A is a set of actions, P : {S × A×
S} → [0, 1] is a transition function, and R : S → R is
a reward function. The solution to an MDP is a policy
π : S → A. An optimal policy ensures that the agent
receives maximal long-term expected reward.

A TTD-MDP shares components with a traditional
MDP. Specifically, a TTD-MDP is defined by a tuple
(T ,A, P, P (T )), with states T that are partial or com-
plete finite-length trajectories of MDP states; a set of
actions A; a transition model P ; and a target distribu-
tion over complete trajectories P (T ).1 Note that the
target distribution replaces the reward function. The
solution to a TTD-MDP is a policy π : T → P (A) pro-
viding a distribution over actions in every state. The
optimal policy results in long-term behavior as close to
the target distribution as possible.

Any finite-length discrete-time MDP can be con-
verted to a TTD-MDP. Consider an MDP with a set
of states S and sets of actions available in each state
As, the probability Pi+1(s′) that the process is in state
s′ at time i+ 1 is defined recursively by:

Pi+1(s′) =
∑

∀s∈S,a∈As

(P (s′|a, s) · P (a|s) · Pi(s)) (1)

1As we shall see, the inclusion of actions in the trajec-
tory allows us to ensure that our TTD-MDP is not under-
constrained.

where P (s′|a, s) is the transition model encoding the
dynamics of the world and P (a|s) is the policy under the
agent’s control. During an actual episode, Pi(s) = 1;
if we assume (as is commonly done) that the policy is
deterministic, we get a common form of Equation 1,
rewritten as: Pi+1(s′) =

∑
∀s∈S,a∈As

P (s′|π(s), s).
Because we are interested in trajectories in TTD-

MDPs, we can simply roll the history of the MDP states
into the TTD-MDP trajectories, resulting in an TTD-
MDP where each trajectory represents a sequence of
states in the underlying MDP, optionally including a
history of the actions taken. Note, that because we re-
quire a finite number of trajectories for the TTD-MDP,
in this formulation the MDP cannot have cycles.

Dealing with trajectories means that the “state”
space of the TTD-MDP forms a tree. The power of this
insight becomes evident when we restate Equation 1 for
TTD-MDPs:

P (t′) =
∑

∀a∈At

(P (t′|a, t) · P (a|t)) · P (t). (2)

In other words, for every partial or full trajectory t′,
the transition probability P (t′|a, t) is nonzero for ex-
actly one t @ t′ that is its prefix. This observation
follows from the fact that each trajectory represents
a unique sequence of states s1, . . . , s‖t‖ and therefore
has a unique prefix. Thus, the summation need only
account for possible actions taken in the preceding tra-
jectory rather than actions in multiple MDP states. Be-
cause each trajectory has a fixed length and can there-
fore appear at only one specific time, we can drop the
i subscripts.

Finally, we need a target distribution. In general, any
arbitrary target distribution can be used. There are a
variety of ways one might imagine encoding a distribu-
tion. In this work we will focus on the case where a
distribution has been specified and may be queried.

We can now define an algorithm to compute a policy
P (a|t) for every partial trajectory in T .

1: Build a tree of all possible trajectories.
2: Initialize each leaf node (complete trajectory) with

its target probability P (t).
In reverse topological order:

3: for Every t do
4: for Every child t′i of trajectory t do
5: Condition Equation 2 on t:

P (t′i|t) =
∑

∀a∈At

(P (t′i|a, t) · P (a|t))

6: end for
7: This forms a system of |Tt′i | linear equations in

|At| unknowns:

~P (t′i|t) = ~P (t′i|a, t) · ~π(t)

which can be solved for π using standard linear
algebra.2

2In order to have a well specified linear system it is nec-

1214



8: Substitute π into Equation 2 and determine if
there is at least one non-zero product of a row
and column.

9: if There is no non-zero product then
10: P (t) = 0
11: else
12: P (t) =

∑
i P (t′i)

13: end if
14: end for

In steps (9)-(13), we identify when no non-zero prod-

uct of rows of ~P (t′i|a, t) and the column vector ~π exists.
If there is no non-zero product, then there is no policy
that will satisfy any percentage of the goal probability
P (t′i) and we set P (t) = 0.

Practical Issues

Impossible Constraints

When an exact solution is obtainable the algorithm will
return an optimal policy; however, this is not always
possible. There are two types of errors we can en-
counter. First, there may be no vector ~π(t) that satis-
fies the linear system exactly. Second, even when there
is an exact solution, the elements of ~π(t) may not be
probabilities (though they will still sum to 1.0).

Lemma 1. For a given trajectory t with subsequent tra-
jectories t′1, . . . , t

′
n and actions a1, . . . , am, the following

condition is sufficient for there to be no exact solution
to the system of equations where the entries of ~π(t) are
probabilities:

∃i such that either

∀a :P (t′i|a, t) < P (t′i|t) (3)

or ∀a :P (t′i|a, t) > P (t′i|t) (4)

Proof. The proof follows from the observation that un-
less the probabilities of two actions bracket the desired
distribution (or at least one matches exactly) there is
no convex combination of actions that can result in the
desired distribution.

Corollary 2. If the system has an exact solution, then
for every t′i, there exist aj , ak such that P (t′i|aj , t) ≤
P (t′i|t) and P (t′i|ak, t) ≥ P (t′i|t).

For example, consider a trajectory t′, three subse-
quent trajectories t1, t2, t3 and three actions a1, a2, a3
whose linear system is defined by:[

0.0
0.3333
0.6667

]
=

[
0.5 0.5 0.0
0.0 0.5 0.5
0.5 0.0 0.5

]
· ~π(t) (5)

essary for the number of trajectories reachable from the cur-
rent trajectory to be at least as large as the number of avail-
able actions. If this is not the case, the action taken can be
included in the representation of the trajectory so the same
state-based trajectory will appear to be different depend-
ing on the action. This procedure ensures at least as many
trajectories as actions.

Then, the solution vector

~π(t) =

[
0.3333
−0.3333
1.0000

]
does not represent a probability distribution.

While this solution is not a vector of probabilities, it
does satisfy the linear system. Intuitively, achieving the
desired distribution requires that action a2 be “undone”
some percentage of the time. Since it is impossible,
in practice we zero out any negative values and renor-
malize. We have derived a lower bound on error when
Lemma 1 holds for only one trajectory tj : ‖Ŷ − Y ‖1 =

‖~P (ti|a, t′) · π̂(t)−Y ‖1 ≥ 2× [mina |P (tj |a, t′)− P (tj)|]
where Ŷ is the distribution of trajectories for a partic-
ular choice of policy π̂(t) (e.g after the normalization

to P̂ (a|t′)) and Y is the desired distribution. While we
have not yet proven that our normalization procedure
hits this lower bound, empirical analysis indicates that
it always does.3

Intractable Problems

Our algorithm builds a trajectory tree. In practice, the
trajectory tree may be infeasible to compute and store,
or completely specifying a distribution over all trajecto-
ries may be difficult or impossible. Here, we introduce a
method for solving TTD-MDPs in this case. The basic
strategy is to sample some number of trajectories from
P (T ) and build a smaller tree based on those.

1: Pick some Ts ⊂ T to sample and construct a distri-
bution. We chose the empirical distribution:

P̃ (Ts) =

{
0.0 if P (t) < φ
P (t)
C otherwise

by normalizing the desired probabilities of all sam-
pled trajectories above some given threshold φ.

2: Build a trajectory tree using Ts and P̃ (Ts)
3: Solve the resulting problem using the algorithm

from above, picking some recovery mechanism for
action selection once a trajectory not sampled is
encountered.

We assume that it is most important to reduce er-
ror on the high-probability trajectories. This method
focuses on reducing overall error in the approximation
by ensuring that the areas of the trajectory space that
could potentially contribute the largest local error are
solved as accurately as possible. Even if the evaluation
sampling “falls out of” the set of sampled trajectories
Ts (e.g. if non-determinism causes an undesirable ac-
tion outcome), we still maintain several nice character-
istics. If our deviation from the sampled trajectory tree
is near the root, it is likely that most or all of the sub-
sequent trajectories have low probability in P (T ) (and

were therefore not included in P̃ (Ts)). On the other

3When Lemma 1 does not hold, we have found examples
where the L1 error is less than this bound.

1215



hand, if an evaluation sample falls out of the set of
sampled trajectories far down the tree, it is likely that
it will result in trajectory with a high desired proba-
bility because that part of the trajectory space is more
heavily represented in Ts. In other words, the effects of
sampling error are minimized when it is possible to do
well and maximized in the cases where it would have
been impossible to do well.

Results
To test the feasibility and accuracy of our algorithm,
we ran experiments on a synthetic grid world and the
drama-management MDP we previously studied.4 The
synthetic grid world is a square-grid MDP where there
are at most two actions in every state; a start state s0 =
(0, 0) and goal state sg = (n, n); and a known transition
model P (s|a, s′). The two actions are “move right” and
“move up” with the obvious meanings. Having only two
actions prevents infinite-length trajectories.

We ran trials with and without deterministic actions.
We also tested with various target distributions. For
each trial, we selected a complete trajectory with some
probability. Each selected trajectory was given uni-
form target probability and the remainder were given
zero target probability. We varied the selection prob-
ability from 0.05 to 1.0. We then built the tree and
computed a policy that was used to generate 1,000,000
samples. The relative frequency of each trajectory was
compared against its target and error was reported as∑

t∈T |P (t)−Emp(t)| (where Emp(t) is the frequency
of t during sampling evaluation). Lastly, we varied the
size of the grid from 5 × 5 to 10 × 10. For each set of
parameters, we ran 10 trials and averaged the results.

When all actions are deterministic, an exact policy
can be easily computed. We plot the results of these
trials in Figure 1 to illustrate the effect of sampling er-
ror. Not surprisingly, the L1 error increases as either
the size of the grid world increases or as the percentage
of complete trajectories with non-zero target probabil-
ity increases. Using 5,000,000 samples in the 10 × 10
grid world reduces this error by half.

A similar experimental setup was used to test the re-
sult of non-deterministic actions. Here, as the percent-
age of complete trajectories with non-zero target prob-
ability is increased, the error is reduced; however, as
one would expect, absolute error is significantly higher
(note the scale of the graphs in Figure 1). Intuitively,
when only a few of the trajectories are desirable, any
non-determinism in the outcome of actions may result
in a trajectory with zero desired probability.

To test on a real-world application—one that is com-
putationally intractable to solve exactly—we used a ver-
sion of the Anchorhead story on which we have previ-
ously explored using RL (Nelson et al. 2006). In our
model, Anchorhead has 29 plot points and 90 drama-
manager actions. The evaluation function is a combi-

4For more details on the drama management MDP, see
Nelson et al. (2006) or Nelson & Mateas (2005).

nation of features, such as the spatial locality of ac-
tion, having plot points occur in an order that moti-
vates later events, and so on; more details on the gen-
eral framework and evaluation functions are given by
Nelson & Mateas (2005).

To evaluate the effect of a drama manager, we run
simulated stories and plot a distribution of story qual-
ities. The drama manager’s goal is to increase the
frequency of highly-rated stories and decrease the fre-
quency of low-rated stories. In particular, we would
prefer that very low-rated stories never happen, while
achieving a good distribution over highly-rated stories.
We use the evaluation function and these preferences
to define a TTD-MDP: Any story (trajectory of plot
points) that evaluates below a threshold has a target
frequency of 0, while those above the threshold should
all appear, with the highly-rated ones more likely.

We build a tree from a set of sampled stories, which
we can solve exactly. Unfortunately, during evalua-
tion or actual gameplay, it is often the case that non-
determinism in our player model causes us to encounter
story trajectories not in the tree. We show results from
two recovery strategies. In the first, the system always
takes a domain-specific fallback action. In the second,
online sampling search is used; that is, the system lo-
cally simulates possible stories from the current trajec-
tory and uses the results to choose an action. In gen-
eral, we find that what is best to do is domain specific.
Although not shown, we also tried acting randomly to
recover but that, unsurprisingly, proved to always be
worse than doing nothing. It is a characteristic of TTD-
MDPs in general that the path to the goal is what is
important and therefore acting in an unprincipled man-
ner can almost never be beneficial.

Figure 2 shows several story-quality distributions. In
these experiments, our target distribution avoids any
stories with a quality of less than 0.55, while skew-
ing slightly towards highly-rated stories. The base-
line shows the distribution of story qualities when no
drama manager is used; SAS+ is Weyhrauch’s sampling
search; TTD:Null is the TTD-computed policy with all
null actions taken when the system encounters an un-
known trajectory; TTD:SAS+ is the hybrid sampling
approach; and RL is an RL-trained policy.

Compared to no drama management, SAS+ increases
the number of highly-rated stories, but also results in
more very poorly-rated stories. TTD:Null results in
nearly the opposite of what we intended, increasing the
number of low-rated stories. The distribution resulting
from RL is an impulse at the top of the story-quality
range, illustrating that RL is solving quite a different
problem, as it results in a handful of the same stories
happening repeatedly. TTD using SAS+ as a fallback,
however, yields results consistent with our target distri-
bution: TTD:SAS+ has virtually no stories below the
target cutoff of 0.55, and a nice distribution of stories
above. It appears that the sampling used to populate
the trajectory tree finds prefixes common to the stories
above the threshold. Solving the TTD-MDP results in

1216



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

L
1 

er
ro

r

Percent of Trajectories Targeted

Varying Degrees of Sparsity with Deterministic Actions

10x10
10x10 (5x)

9x9
7x7
5x5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

L
1 

er
ro

r

Percent of Trajectories Targeted

Varying Degrees of Sparsity with Nondeterministic Actions

5x5
7x7
9x9

10x10

Figure 1: Percent Error evaluating with 1,000,000 samples as a function of target distribution sparsity with deter-
ministic and non-deterministic actions.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.4  0.45  0.5  0.55  0.6  0.65  0.7  0.75  0.8

Fr
eq

ue
nc

y

Story quality

Large story: Baseline, SAS+, and TTD:Null

Baseline
SAS+

TTD:Null

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.4  0.45  0.5  0.55  0.6  0.65  0.7  0.75  0.8

Fr
eq

ue
nc

y

Story quality

Large story: Baseline, RL, and TTD:SAS+

Baseline
RL

TTD:SAS+

Figure 2: Graph of drama management results with and without TTD-MDPs as well as results based on threshold
and/or with and without SAS+ or online policy adaption.

a policy that keeps the agents on these trajectories as
long as possible; once the agent falls out of this space,
it is not only already in a good part of the space, but
the number of remaining trajectories has been reduced
enough to make a sampling search feasible and effective.

To better understand the effects of approximating a
solution to a TTD-MDP by sampling trajectories, we
explored a smaller story with only 9 plot points and 28
DM actions. Figure 3 shows a similar improvement
between using the null fallback action and sampling
search; however, we also found that varying the number
of samples used to build the trajectory tree has mini-
mal effect on the resulting distribution. In this case,
increasing from 10,000 to 100,000 samples did have an
effect, but further increasing to 2,000,000 had no effect
on performance. This suggests that this method may
perform well on even larger problems.

Related Work

Although our formulation is novel, there has been some
work that addresses some of the issues raised here. For
example, one attempt to achieve a distribution over ac-
tions for reasons other than trading off exploration and
exploitation came out of work with Cobot, an agent

that interacted with humans in a socially-complex vir-
tual environment (Isbell et al. 2001). There, state-
action Q-values were used to induce a distribution over
actions. This choice resulted in a distribution biased to-
wards positive outcomes (as was Cobot’s goal), but did
not target any specific distribution, nor directly take
into account the way in which locally stochastic action
selection affected the global distribution of outcomes.

Kearns, Mansour, & Ng (2000) describe a trajectory-
tree method in which they use a generative model of ob-
servations and transitions to construct trajectory trees
in POMDPs. Their method uses a sampling approach
where a number of sampled trajectory trees are used in
aggregate to estimate the value of a particular policy.
In our case, we construct one trajectory tree without
a generative model and use it to to solve for a policy,
rather than to estimate its value.

Littman (1994) uses Markov games as a framework
for exploring reinforcement learning in the presence of
multiple adaptive agents. Our formulation is similar
in that it acknowledges a source of randomness out-
side the environment itself, finding a solution that re-
quires a stochastic policy. On the other hand, this work
was not directly concerned with distributions over out-

1217



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

Fr
eq

ue
nc

y

Story quality

Small story: Baseline, TTD:Null, and TTD:SAS+

Baseline
TTD:Null

TTD:SAS+

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

Fr
eq

ue
nc

y

Story quality

Small story: Effect of sample size

10k samples
100k samples

2m samples

Figure 3: Graph of drama-management results on a small story, confirming the effects of SAS+ combined with TTD,
and illustrating the effects of sample size on the quality of TTD policies.

comes, and assumed a zero-sum game. In the formu-
lation of the drama-management problem, the game is
not zero-sum: the player and the drama manager are,
in effect, playing completely different games.

If we think of TTD-MDPs as looking at the dynam-
ics of an MDP, but holding non-traditional elements
fixed, then we find common ground with recent work
in inverse reinforcement learning (Ng & Russell 2000).
In this formulation, the goal is to observe the policy
of an agent and then infer the reward function that
led to its behavior. In the drama management case,
non-determinism arises from the user but also from our
actions. If we think of the desired distribution then
the non-determinism that is not explained by the user
model is exactly the distribution over our own actions.

Conclusions and Future Work
We have presented a new class of Markov decision prob-
lems where matching a target distribution replaces the
goal of maximizing expected reward. Additionally, we
have specified two approaches for solving TTD-MDPs.

We believe that the problem TTD-MDPs address—
namely matching desired distributions over outcomes
and trajectories—is a fertile area for both theoretical
and practical treatment. In the short term we are in-
terested in deriving tighter bounds on the error that
can be achieved in TTD-MDPs, particularly under er-
ror measures other than L1.

We also intend to explore the case where target distri-
butions are not readily available. For example, authors
may find it difficult to write down a distribution, but
are comfortable with specifying a story-evaluation func-
tion. Unfortunately, it is not clear that the evaluation
function will lead to the author’s desired distribution.
The problem becomes one of also modifying the evalua-
tion function so that it leads to the target distribution.

Additionally, we are interested in scaling TTD-MDPs
to apply to even larger problems. One approach is to
deal with sample error in the trajectory tree by dy-
namically adapting the tree through pruning existing
subtrees and adding new subtrees as better estimates

of the desired distribution become available. Another
approach would use an online model-free method where
the trajectory tree is never explicitly represented.

References
Bates, J. 1992. Virtual reality, art, and entertainment.
Presence: The Journal of Teleoperators and Virtual
Environments 1(1):133–138.

Isbell, Jr., C. L.; Shelton, C. R.; Kearns, M.; Singh,
S.; and Stone, P. 2001. A social reinforcement learning
agent. In Proceedings of the Fifth International Con-
ference on Autonomous Agents (Agents-01), 377–384.

Kearns, M.; Mansour, Y.; and Ng, A. Y. 2000. Ap-
proximate planning in large POMDPs via reusable tra-
jectories. Advances in Neural Information Processing
Systems 12.

Littman, M. L. 1994. Markov games as a framework
for multi-agent reinforcement learning. In Proceedings
of the Eleventh International Conference on Machine
Learning (ICML-94), 157–163.

Nelson, M. J., and Mateas, M. 2005. Search-based
drama management in the interactive fiction Anchor-
head. In Proceedings of the First Annual Conference
on Artificial Intelligence and Interactive Digital En-
tertainment (AIIDE-05).

Nelson, M. J.; Roberts, D. L.; Isbell, Jr., C. L.;
and Mateas, M. 2006. Reinforcement learning for
declarative optimization-based drama management.
In Proceedings of the Fifth International Joint Confer-
ence on Autonomous Agents and Multiagent Systems
(AAMAS-06).

Ng, A. Y., and Russell, S. 2000. Algorithms for inverse
reinforcement learning. In Proceedings of the Seven-
teenth International Conference on Machine Learning
(ICML-00), 663–670.

Weyhrauch, P. 1997. Guiding Interactive Drama.
Ph.D. Dissertation, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA. Technical
Report CMU-CS-97-109.

1218


	Introduction
	Motivation: Drama Management
	TTD-MDPs
	Practical Issues
	Impossible Constraints
	Intractable Problems

	Results
	Related Work
	Conclusions and Future Work

