Smart Terrain Causality Chains
for Adventure-Game Puzzle Generation

Isaac Dart and Mark J. Nelson

Abstract—Adventure videogames have the player assume the
role of protagonist in an interactive story, which is primarily
driven by exploration and puzzle-solving. A major drawback
with this genre is minimal replayability, since the player has
already seen what there is to explore, and knows how to solve
the puzzles. We propose a technique to generate variations on
puzzles that fit in the same location in the original story, and
therefore don’t require fully procedural story generation. We
keep a database of smart terrain items, which can have effects
on other items. Puzzles are generated by taking advantage of a
duality between puzzle-solving and generation. Once we build
smart terrain causality chains (STCCs) of puzzle solutions, a
puzzle known to be solvable can be generated by simply inserting
the items contained in a causality chain into the environment.
We demonstrate this technique in an experimental videogame,
Space Dust, which shows that even a very short adventure game
can produce multiple interesting playthroughs when STCC-based
puzzle generation is added.

I. INTRODUCTION

A major criticism of the traditional adventure-game genre
has been that once a player completes a game, there is little
or no replayability. This is due to the progressive, story-driven
nature of the genre, in which a player uncovers how to progress
through an environment, solving puzzles and watching the
story unfold along the way. Once the progression has been
uncovered, there is minimal interest in uncovering the same
thing again.

One approach to increasing replayability could be to make
the story less linear and more dynamic. In recent years, some
adventure games such as Heavy Rain (Quantic Dream, 2010)
have attempted to overcome the replayability issue by intro-
ducing branching storylines, where a player’s choices influence
which forks are taken. The motivation for branching stories is
usually to increase agency—making the player feel that their
decisions really impact the story—rather than specifically re-
playability. Nonetheless, branching stories in adventure games
do add a certain kind of replayability, since the player can take
a different fork the next time through, and experience a new
portion of the story, which will contain new challenges not
seen in the first playthrough.

A problem with branching stories is that considerable ad-
ditional authoring and engineering effort is needed: each of
those branches, and all the locations, characters, and art assets
needed for them, must be created and tested. Procedurally
generating those story branches is a possible medium- to

The authors are with the Center for Computer Games Research at
ITU Copenhagen. email: isaac.dart@gmail.com, mjas@itu.dk

978-1-4673-1194-6/12/$31.00 ©2012 IEEE

long-term solution, but involves solving a mixture of content-
generation problems, including the notoriously difficult prob-
lem of story generation.

Here we propose a different approach: replayability with-
out high-level narrative variation, by procedurally generating
puzzles that reuse existing locations and fit into the existing
narrative progression. Despite retaining the same storyline and
content, this will nonetheless produce new challenges when
replayed; the player cannot just rush through doing exactly
the same thing as on a previous playthrough.

We aim for a near-term, practical, “drop-in” solution to
adding procedural variation within adventure games. We can
observe a common pattern in adventure games where portions
of the story have as a bottleneck an objective the player must
reach to progress, and a puzzle they must solve to reach the
objective, often by using several items. A simple example
might be to open a treasure chest; the puzzle is finding and
using the key. For our purposes, each challenge is made up
of game props which, when used in the correct way, solve
the challenge. It is at this level that we are able to introduce
emergence and re-playability into adventure games without
requiring changes in the high-level content: by retaining the
same objective of a particular challenge, but varying the
available props and their usage, we can replace a puzzle
with another one that serves an equivalent role in the story
progression, but is not the same as on previous playthroughs.

II. SMART TERRAIN CAUSALITY CHAINS

Items in an adventure game can be viewed from the
perspective of “smart terrain”, which characterises items by
what problems they can solve for the player. The term was
popularised by game designer Will Wright; in Wright’s The
Sims, “objects on the terrain broadcast what they offer to a
Sim character... for example, a refrigerator might broadcast
the fact that it can satisfy hunger” [1]. Pieces of smart
terrain, like the related computer-graphics concept of “smart
objects”, can be queried for a list of actions a particular object
can perform, relative to some semantics of a given virtual
world [2]. Objects may also broadcast and react without direct
player involvement; for example, an oven in The Sims offers
the player a list of explicit actions the oven can be used for
(e.g., bake another item), and also contains actions not shown
to the player, such as catching on fire if an item is left too
long.

In an adventure-game puzzle, what an item does for the
player is one of two things. Either it solves the puzzle directly,
allowing the player to reach the objective, or it produces

328

combust

forming

evaporates

A

A\

.

forming

forming

Fig. 1: An example smart terrain causality chain (STCC). In
this case, the puzzle starts with two smart-terrain objects, a
wooden crate and an ice cube. The outcome is steam, and the
chain encodes the causal relationships to get from the starting
objects to steam.

an effect on another item, which will allow another item to
(eventually) get the player to the objective. Therefore we can
think of any puzzle solution as a sequence of items; this is the
smart-terrain shorthand for viewing a puzzle solution as the
sequence of actions that the player can take by using those
items.

A smart terrain causality chain (STCC) is a directed graph
specifying the causal dependencies between the smart terrain
objects present in a scene and the objective of the puzzle.
Figure 1 shows an example causal chain, one that produces
steam from starting items wood and ice (by burning the
wood, which produces fire, which melts the ice, which is then
evaporated by the fire).

In Space Dust, many of the items provide the player with an
“actions” menu when selected. These active actions could be
compared to The Sims’ oven in displaying a list of actions to
the player. On the other hand, passive actions are those which
occur without player input, such as a “heat” instance notifying
nearby smart terrain to increase in temperature.

A. Smart terrain

Unlike in traditional adventure games, items do not have
to play a single role. In a traditional adventure game, a piece
of paper with a code on it might be used to convey to the
player what code to enter when opening a vault. Once the
vault door is open, the paper may have no other meaning or
use in the game, if none was programmed for it. This narrow
model can often be a source of frustration for the player when

2012 IEEE Conference on Computational Intelligence and Games (CIG’12)

she believes that such an item could be used in other tasks
which it wasn’t programmed to do. For example the game
may enforce a rule that she has to find some newspaper to
light a fire, despite the fact she already has the code written
on paper, which should also be burnable. To procedurally
generate puzzles, a more flexible model is required that allows
items to affect other items that they may not be aware of,
or have not even been created at that point. This model is
less concerned about particular object interaction, and more
concerned about how a type of object affects the environment
and how environmental forces affect that type.

Compared to the classic “hard coded” approach, where
newspaper is programmed to burn when a lighter is used on it,
smart terrain paper doesn’t need to know anything about what
item will make it burn; rather it simply knows that it should
combust if its temperature reaches a certain point. In other
words, smart terrain objects only need to know about their
own behavior and reactions to other physical forces, rarely
reacting to particular instances of other objects.

The interactions between smart terrain objects are im-
plemented at two levels: a physics simulation in the game
engine itself that implements the actual interactions, and a
symbolic description of the possible interactions, which is
used to procedurally generate causality chains. In both cases,
objects are arranged into object hierarchies, so for example a
newspaper is a kind of paper, and inherits the behaviors that
all paper has (such as burning above a certain temperature).

B. Physics simulation

The physics simulation provides the “glue” that causes
interaction between objects without each knowing about the
other: a fire knows to emit heat into the world, and a paper
knows to burn when heat passes a threshold. The physics
engine is the medium in between the two that propagates the
heat from the fire to the paper.

The physics engine for Space Dust is implemented in the
Unity game engine. The root smart terrain objects are the three
classical states of matter: solid, liquid, and gas. Objects can
be modified by undergoing the familiar phase transitions—
melting, freezing, evaporation, and condensation—as well as
by undergoing custom transitions, such as crumbling a piece
of paper or burning it.!

Objects affect each other by direct collision or indirect
energy. Object movement depends on the state: solids can
fall via gravity, liquids not in a container disperse along
flat and downwardly sloped surfaces, and gases not in a
container diffuse through the air. If these movements cause
two objects to collide, they may affect each other as a result.
Alternatively, objects can emit several kinds of energy, which
will affect objects in range that respond to that kind of energy.
Energy can come in many forms, of which we’ve implemented
four: thermal radiation, electrical current, radio transmission,
and sound emission. Each of these travels in different ways;

IThe fourth phase of matter, plasma; and the direct solid/gas transitions,
sublimation and deposition, are a bit too esoteric to be commonly used in
adventure-game puzzle physics.

329

for example, thermal radiation expands in a gas-like cloud,
whereas radio transmission instantly reaches everywhere in
range.

C. Generating causality chains

To generate causality chains capturing a sequence of smart
object interactions that can solve a puzzle, we need a qual-
itative version of this physics simulation rather than the full
numerical one, capturing which interactions are possible when
the simulation is actually run; for example, the facts that paper
can burn, and water can short-circuit electronics. To keep it
lightweight, we don’t implement a full qualitative physics
system [3], but instead maintain a discrete list of possible
actions that can act on each smart-terrain object, together with
the cause and the effect of each action. Doing so allows us
to implement a simple, greedy backwards-chaining planner
directly in Unity, with actions retrieved from an embedded
SQLite database.

Each object is assigned an ID, and can appear one or more
times in a table of actions, which has four fields:

o object_id: The object this action operates on

« action: A verb describing the action

« cause: A symbol specifying what triggers this action

« effect: A symbol specifying the outcome of the action

For example, the following two entries specify that a sprin-
kler can be activated by smoke, producing water; and a paper
can be burned by fire, producing smoke.

object action | cause | effect
sprinkler | activate | smoke | water
paper burn fire smoke

From this example pair, the causal chaining possibilities
should be clear: one possible way to produce water is to use
fire (from another object, perhaps a lighter) to burn a paper,
which produces smoke, which can activate a sprinkler, which
produces water. If a cause is of the form object(object_name),
it means that the action can be directly caused by a specific
object. If an effect is of that form, it means that the action
spawns the named object.

Smart terrain causality chains are procedurally generated by
starting from a set of objectives for a scene, and backwards
chaining until they ground out in causes that are all primitive
smart-terrain objects that can be placed into the scene. A
scene is simply the level of granularity at which we generate
puzzles; the outcomes of a scene are used by the author to
connect the generated puzzles into the larger story progression.
Each scene can have one or more possible objectives, and
achieving any of them is considered a puzzle solution. Each
objective is a specific effect on a specific smart terrain object.
For example, in Space Dust, the player escapes the prison
cell whenever the effect rurn_off happens on the smart terrain
object electro_bars (see Section III).

A simple backwards-chaining algorithm suffices to solve
this problem. We first choose a random objective, and add
the effect needed to satisfy that objective to our list of effects
that we must cause. Now we look for an action that has that

2012 IEEE Conference on Computational Intelligence and Games (CIG'12)

effect, and add it to the causality chain. This action in turn
may need some causes, and we repeat, finding another action
whose effect matches up with the needed cause. This process
continues until it grounds out in the specially treated cause
object(Player), indicating something the player can do directly.
Figure 2 shows example causal chains generated in our game
Space Dust.

This formulation can be seen as a subset of STRIPS
planning [4], itself a simplification of logical planning in
which the objective and all preconditions and postconditions
of planning operators must be conjunctions of positive literals.
A STRIPS operator corresponds to our actions, a precondition
to our causes, and a postcondition to our effects. Since we have
no logical operators, we trivially meet the STRIPS conditions,
and as a result, simple backwards chaining rather than more
complex theorem proving suffices.

To produce the puzzle, all smart-terrain objects referenced
in the STCC are added to the scenario. By construction there
will be one or more solutions to the puzzle as a result, taking
advantage of the duality between puzzle solving and puzzle
generation. In addition, all items placed in the puzzle will
have some possible use for at least one of the solution paths,
which is consistent with traditional adventure-game design, in
which the player finding objects is typically used as a hint
towards the solution, so having many objects with no purpose
wouldn’t be desired. However, if desired, the algorithm can be
run multiple times and the runs combined, to produce puzzles
with multiple solutions.

When adding smart-terrain objects to a puzzle, there are
several additional cases. Objects at the leaves of the smart-
terrain object hierarchy are concrete objects, and have graph-
ical models associated with them, so they can be instantiated
and placed in the world. Objects further up the hierarchy are
abstract smart terrain, which can be referenced when building
causality chains, but must be specialised to a specific object
before the puzzle can actually be produced. By inheritance,
however, any object beneath the abstract object in the hierarchy
may be selected (we simply select randomly). Secondly, some
objects may inherently depend on another object, for physical
or conceptual reasons. We keep a second table of object
dependencies, and add in any dependencies of the objects
contained in an STCC, even if they aren’t themselves part
of the causal chain.

Finally, some objects may need to be included to make the
puzzle a challenge at all; each scene includes a list of such
mandatory objects. In our Space Dust puzzle, for example,
there is one solution that involves the player exiting the room
without turning off the electric bars blocking the doorway
(instead, the player shrinks and exits through a small hole).
Therefore, this solution’s STCC doesn’t include electro_bars
in it, so they wouldn’t need to be added to the scene as a re-
quired smart-terrain object for the puzzle solution. But if they
aren’t added, the player can simply walk out the unobstructed
door! The bars are needed here even if the player doesn’t
use the solution that involves disabling them, because they
serve the purpose of enforcing the challenge even for other

330

(b) (©

Fig. 2: Examples of STCC-generated puzzles in Space Dust, with the smart objects and causality chains labeled. See
Section III-A for an explanation of each puzzle.

2012 IEEE Conference on Computational Intelligence and Games (CIG'12) 331

Fig. 3: First-person view of the main Space Dust puzzle, in
which the player must escape from a prison cell. Here, the fire
sprinkler has been activated, spilling water on the floor, which
shorts the electric bars blocking the doorway.

solutions. This meshes with Dormans’s [S] observation that
procedurally generated missions are insufficient for enforcing
challenges unless coupled with world boundaries.

III. Space Dust

We built a prototype game, Space Dust, in which a single
adventure-game level is replayed multiple times, as a core part
of the gameplay (multiple playthroughs are intended to be
necessary). The goal was both to test our puzzle-generation
system, and to investigate the hypothesis that adventure games
can have significant replayability added if the puzzles are
varied, even when the general story progression isn’t.

The player plays a character imprisoned on board a space
ship adrift in deep space, attempting to escape from a prison
cell. Each time the player gets caught, or passes out, they
wake to find themselves back in the cell with a new puzzle
to solve. Figure 3 shows a first-person view, with the electric
bars blocking the cell exit being shorted out by water from
the fire sprinklers.

Once the player solves the main objective of escaping from
the cell, they have a choice to go to the left or right corridor.
To the right is certain death by way of a Killer Bots stun
gun, and to the left is an airlock. The airlock will eject the
player into deep space where they have a short amount of time
to find the airlock entrance to the bridge before passing out
and waking, once again in prison with another procedurally
generated puzzle. Since this involves a series of immediate
replays, rather than generating puzzles purely randomly, we
store generated puzzles and make sure that subsequent puzzles
don’t repeat any previous puzzle (until the game is completely
restarted).

As intended, no playtester has won the game in their first ten
attempts. The reason for this borderline abusive win condition
was to guide the gameplay into presenting multiple scenarios
to the player in order for them to experience, solve and
hopefully enjoy the replay value of the game. One playtester

2012 IEEE Conference on Computational Intelligence and Games (CIG'12)

enthusiastically described the experience as being similar to
the movie Groundhog Day.

The player interface in Space Dust is a typical 3d adventure-
game interface. The player can walk around using WASD
controls and mouselook; players can also pick up, use and even
throw Smart Terrain items, as well as interact with characters
by selecting them and being presented with a context sensitive
smart-terrain actions menu.

A. Example puzzles

Three example generated puzzles, schematically illustrated
in Figure 2 and glossed in English below, illustrate some of
the range of variation:

(a) If the player upsets the small robot guard, he will
shrink the player. The game designer specified being
shrunk as a winning condition for the prison cell level,
because there is a small air vent in the cell which
the player can escape through once miniaturised. Even
though electro bars are not a part of this plan, they have
been automatically included, as they are specified as a
required scene object.

(b) The electro bars will short-circuit on contact with wa-
ter (these aliens were clearly not very bright). A fire
sprinkler is randomly selected to create this water; and
paper is randomly selected to create smoke. Since paper
requires fire to be present to produce smoke, a lighter
is selected to instigate the fire. The player is selected
to light the lighter, thus ending the puzzle-generation
backwards chaining.

(c) An access panel is made available to turn off the electro
bars. This panel requires a key card and a code to
authorise a switch-off. The player must search the cell
to find these two items. Additionally, the access panel
is made aware of the paper-with-code, and registers the
code on the paper as the only valid code.

B. Controlling difficulty

The difficulty level of a puzzle can be altered by changing
the number of solutions which are procedurally generated
in parallel. Players can have between one and three parallel
causality chains generated at a time.

It is not immediately obvious if more solutions in a scene
make the main objective easier or harder to complete. More
solutions allow multiple routes to complete the objective, but
also cause more objects to be placed in the scene. Because
players often rely on the objects in a puzzle to guide their line
of thinking, having many objects in the scene may confuse the
player as a significant portion of objects will play no role in
their final solution.

In order to determine whether more solutions increases or
decreases the difficulty of solving a main objective, a playtest
was performed, in which ten testers were given generated
puzzles with between one and three parallel solutions, which
they played twice each, before answering a survey which
included questions on the difficulty in escaping from the prison
cell.

332

The survey revealed that 70 percent of people found that
more solutions were easier. A number of participants com-
mented that it was easier because they could switch strategies
and try another solution if they got stuck with a particular
item. Several players did find that more objects caused more
confusion, however.

Looking at variation within a single puzzle, players gen-
erally said that the longer the causality chain was, the more
difficult it was to solve. One player commented that a puzzle
made of two objects was “insultingly easy”. On the other hand,
only one person was able to solve the puzzle with the longest
chain. Puzzle length is therefore another viable alternative for
mapping against a difficulty setting.

IV. RELATED WORK

Symon [6] is another experimental adventure game with
procedurally generated puzzles based on item placement. It
generates “dream logic” puzzles, in which events are linked in
a way that’s intended to somewhat make sense, yet not quite.
Puzzles are formulated as template-like grammar structures,
which are then filled in with items from a database, possibly
subject to constraints (e.g., that one template slot can only be
filled with a cold item). The inspiration behind Symon’s use of
grammatical structure in representing puzzles chains is based
on Fox Harrell’s work in developing a system to procedurally
generate poetry, called GRIOT [7]. Somewhat simplified,
GRIOT relies on inputs consisting of phrase templates which
contain wildcard tokens later populated with domain aware
words which form poetry instances. Such inputs are provided
by a poetic system designer.

Dormans [5] approaches adventure-game puzzle generation
starting from the higher-level structure of the adventure genre’s
scenarios. In his system, a graph grammar is used to generate
missions, and a shape grammar to generate spaces (the world).
Dormans describes how adventure games are composed of
spaces and missions and goes on to explain that, although
separate concepts, they have certain relationships to each other.
For example, some treasure (mission) must be placed behind
a door (world) otherwise the player will find the challenge
trivial.

Such grammar-based methods, compared to our causal-
reasoning approach, make different things explicit. In
grammar-based methods, causal relationships are implicit, and
enforced only to the extent that the grammar expansion pre-
vents causally impossible things from being produced, but the
higher-level structure of a puzzle is explicit and enforced by
construction. In causal-reasoning methods (such as ours), on
the other hand, causal relationships are explicit and enforced
by construction, but higher-level structure is implicit, and
enforced only to the extent that the causal constraints, or other
explicitly added constraints (such as our required objects)
indirectly produce such structure.

The procedural cartoon gag generator of Olsen and
Mateas [8] targets a somewhat different problem (comedic
gags rather than puzzles), but uses a hierarchical task network
(HTN) planning technique that comes closer to our planning

2012 IEEE Conference on Computational Intelligence and Games (CIG'12)

approach. The planner in their system places props, and plans
action sequences, in a simulated Coyote and Road Runner
scenario so that a comedic failure in the coyote’s plan to catch
the road runner will result. Thus it uses similar techniques to
achive almost the opposite result—solvable puzzles are the
goal in adventure games, but failure of the coyote’s schemes
are the core of the Road Runner and Coyote cartoons’ humor.
In future work, if we generate longer puzzles, an HTN planner
might allow us to combine the benefits of our backwards-
chaining causal reasoning and the higher-level structure given
by the grammar-based puzzle generators, since it allows an
author to specify hierarchical decomposition within the plan-
ning process (e.g., that a particular puzzle should be solved in
three specific phases).

V. CONCLUSIONS

Smart terrain causality chains (STCCs) are a technique for
procedurally generating adventure-game puzzles by generating
adventure-game puzzle solutions from a set of smart-terrain
objects, and then placing those objects into the scene. Smart-
terrain objects are annotated with effects they can trigger or
have triggered, but are not directly linked to other objects in a
classic adventure-game style, so can have multiple uses—the
note on which a code is found can later be burned to produce
smoke, for example, without this explicitly being programmed.
STCC-based generation can produce multiple puzzles fitting
into a common place in a larger story progression, by con-
straining a specific generated scene to end with a specific
objective; this allows for increasing replayability by making
puzzles procedurally generated without having to solve the full
problem of story generation for adventure games.

Our experimental game Space Dust showcases this replaya-
bility in an admittedly somewhat extreme way, by designing a
game where the typical player has to replay the same scenario
approximately ten times before they’re able to successfully
beat it. Each replay has a newly generated puzzle with the
same objective (escaping from the ship), and the player retries
until they successfully escape. Our preliminary experiments
showed that players found this engaging, despite it being
the “same” puzzle played repeatedly, if viewed from the
perspective of story progression. This opens up a new space
of possible procedural-puzzle-based design tropes in adventure
games, in addition to potentially increasing the replayability
of more traditional, story-driven adventure games by varying
the puzzles on subsequent playthroughs.

VI. FUTURE WORK

There are three main areas of future work: object place-
ment, action/effects inference, and broadening the scope of
procedural generation.

A. Object placement

Object placement is currently not automatic: an STCC
provides a list of objects to be entered into a scene, but
not where they should be placed. In some puzzles this can
add another dimension of puzzle solving, since placement can

333

make a significant difference to difficulty or interestingness.
We currently use some heuristics to avoid particularly bad
solutions; for example, objects that can effect each other at a
distance are placed at initial positions out of range, so they
don’t immediately start interacting without the player having
done anything. In addition, other objects’ placements are hard-
coded, so the toilet for example must be on the floor and
against a wall.

Improvements would involve generalizing these heuristics to
a set of constraints on placement, which could then be passed
off to a separate placement routine, based on optimization
or constraint-solving. Doing so would also require seman-
tic information about the environment [9] and/or the game
mechanics [10], [11], whereas currently only information
about the semantics of the smart-terrain objects themselves
is maintained.

B. Action/effects inference

In the current version of Space Dust, all cause and effect
information pertaining to smart terrain must be manually
entered by the author. For instance, the author was required
to enter that if a fire sprinkler detects fire, it will emit water.

Automating this process is possible in a number of ways.
The cause/effects information could be more closely linked
with the physics system by implementing a qualitative-spatial-
reasoning system [3], or even something more ambitious, such
as commonsense reasoning about objects that can determine
their potential uses [12]. An alternate solution that would
allow us to retain the current simple runtime would be to run
offline analysis when a new object is created, to automatically
extract some of its properties. For example, newly created
smart-terrain objects could be placed into a virtual analysis
box which applies various physical forces to it and then
automatically records into the actions table any effects that
are observed.

C. Broader procedural generation

Although STCC-based puzzle generation generates a key
portion of adventure games—the puzzles—that is still a
long way away from procedurally generating entire adventure
games. The primary difference between our approach here and
a fully procedural adventure game is that we make no attempt
to generate the environments, stories, or items themselves, but
limit ourselves to generating puzzles using items that are then
placed in environments, and are situated within a story. Our
generation process runs once those three parts of the game are
already defined.

Combining puzzle generation with Dormans’s research on
procedural missions and spaces [5] is one possible approach,
using each system as a separate layer in the generation process.
Another avenue would be to move to a richer model of
dependencies than our STRIPS-like model of preconditions
and effects; planners that can handle more complex planning
formalisms together with smart objects [13] may open up
new possibilities. More generally, theories of causality often
make finer distinctions among kinds of causal relations, and

2012 IEEE Conference on Computational Intelligence and Games (CIG'12)

which ones matter for which purposes [14]. In addition, ours
is a simplified account of how causally related game elements
structure gameplay. In our model, puzzle games consist of a
player traversing/connecting causality chains to solve puzzles;
but the relationship between gameplay and causal chains in
general can be considerably more complex [15].

Finally, items themselves could be generated using proce-
dural item generation, a form of procedural content generation
that would simultaneously generate the graphical manifestation
of game-world content (as is currently done with, e.g., rocks,
trees, and textures), plus that content’s uses within a puzzle.

ACKNOWLEDGMENTS

Thanks to Julian Togelius for helpful discussions at various
stages of the project, and to an anonymous reviewer for a
number of suggestions that improved the paper.

REFERENCES

[1] N. Kirby, “Solving the right problem,” in Al Game Programming
Wisdom, S. Rabin, Ed. Cengage, 2002, pp. 21-28.

[2] M. Kallmann and D. Thalmann, “Modeling objects for interaction tasks,”
in Proceedings of the 9th Eurographics Workshop on Animation and
Simulation, 1998, pp. 73-86.

[3] M. Cavazza, S. Hartley, J.-L. Lugrin, and M. Le Bras, “Qualitative
physics in virtual environments,” in Proceedings of the 9th International
Conference on Intelligent User Interfaces, 2004, pp. 54-61.

[4] R. Fikes and N. Nilsson, “STRIPS: A new approach to the application
of theorem proving to problem solving,” Artificial Intelligence, vol. 2,
no. 3-4, pp. 189-208, 1971.

[5] J. Dormans, “Adventures in level design: generating missions and spaces
for action adventure games,” in Proceedings of the 2010 Workshop on
Procedural Content Generation in Games, 2010.

[6] C. Fernandez-Vara and A. Thomson, “Procedural generation of narrative
puzzles in adventure games: The puzzle-dice system,” in Proceedings of
the Workshop on Procedural Content Generation at FDG 2012, 2012,
pp. 18-23.

[71 F. Harrell, “Shades of computational evocation and meaning: The
GRIOT system and improvisational poetry generation,” in Proceedings
of the 2005 Digital Arts and Culture Conference, 2005, pp. 133-143.

[8] D. Olsen and M. Mateas, “Beep! beep! boom!: Towards a planning
model of Coyote and Road Runner cartoons,” in Proceedings of the 4th
International Conference on the Foundations of Digital Games, 2009,
pp. 145-152.

[9] T. Tutenel, R. M. Smelik, R. Bidarra, and K. J. de Kraker, “Using

semantics to improve the design of game worlds,” in Proceedings of

the 5th Conference on Artificial Intelligence and Interactive Digital

Entertainment, 2009, pp. 100-105.

A. M. Smith, M. J. Nelson, and M. Mateas, “Ludocore: A logical game

engine for modeling videogames,” in Proceedings of the 2010 IEEE

Conference on Computational Intelligence and Games, 2010, pp. 91—

98.

A. M. Smith, E. Andersen, M. Mateas, and Z. Popovi¢, “A case study

of expressively constrainable level design automation tools for a puzzle

game,” in Proceedings of the 7th International Conference on the

Foundations of Digital Games, 2012, pp. 156-163.

J.-L. Lugrin and M. Cavazza, “Making sense of virtual environments:

Action representation, grounding, and common sense,” in Proceedings of

the 12th International Conference on Intelligent User Interfaces, 2007,

pp. 225-234.

T. Abaci, J. Ciger, and D. Thalmann, “Planning with smart objects,” in

Proceedings of the 13th International Conference in Central Europe on

Computer Graphics, 2005, pp. 25-28.

J. Pearl, Causality: Models, Reasoning, and Inference.

University Press, 2000.

M. Eskelinen, “The gaming situation,” Game Studies, vol. 1, no. 1, 2001.

(10]

[11]

(12]

[13]

[14] Cambridge

[15]

334

