
Computational Support for Play Testing Game Sketches

Adam M. Smith�, Mark J. Nelson�†, Michael Mateas�

� Expressive Intelligence Studio, University of California, Santa Cruz
† School of Interactive Computing, Georgia Institute of Technology

amsmith@cs.ucsc.edu, mnelson@cc.gatech.edu, michaelm@cs.ucsc.edu

Abstract

Early-stage game prototypes need to be informative without
requiring excessive commitments. Paper prototypes are fre-
quently used as a way of trying out core mechanics while
leaving them easy to change. Play testing on even these early-
stage prototypes can give an idea of how the rules play out
and whether the game is fun and engaging. Recently, re-
searchers have proposed using automated analysis of games
to discover additional properties of games, such as exploits
and other gameplay issues.
We propose a lightweight game-sketching approach to give
designers access to insight derived from both human and ma-
chine play testing. Using our system, BIPED, a designer
specifies a game’s mechanics and maps them to a set of board-
game-like primitives. Games created with BIPED can be
played interactively on a computer as well as automatically
analyzed, giving designers two complementary sources of de-
sign backtalk.
In this paper, we describe the language designers may use to
sketch games, how they might use our tool in the two modes
of play testing, and how the prototypes are computationally
realized. Additionally, we study using our system to proto-
type a game and examine it in human and machine play tests.

Introduction
Prototypes, both physical and computational, are an essen-
tial tool in a game designer’s arsenal. In a popular game-
design text, Fullerton (2008) defines a prototype to be “a
working model of your idea that allows you to test its feasi-
bility and make improvements to it”. At the earliest stages,
the designer can operate purely conceptually, thinking up
new mechanics and imagining how they might interact with
each other and the player; but at some point all designers
need to try them out. This has been described as getting
backtalk from a design situation: the designer begins with
some idea of how her design should work, but by trying out
a prototype, she uncovers unforeseen new information on
how it actually does work (Schön 1983). In game prototyp-
ing, that new information can be both in terms of player ex-
perience, observing player’s excitement or hesitation to take
a critical action; and in terms of how the game’s rule sys-
tem operates, laying bare gameplay exploits and additional
solutions to counterintuitive puzzles.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Physical prototypes are an early-stage game design and
play testing tool, in which low-fidelity versions of a game’s
core mechanics are mocked up. Even a complex real-time
videogame can be prototyped using cards, tokens, dice, and
similar physical objects (Sigman 2005; Fullerton 2008, ch.
7). These prototypes aim to let the designer get backtalk af-
ter minimal effort, before committing to the cost of building
a computational prototype (though it may provide higher-
fidelity backtalk). An important aspect of low-commitment
techniques is the ease of exploring related ideas.

There is some gray area between physical prototypes and
computational prototypes as well. One common way of us-
ing a computer to run the game’s rules while keeping things
lightweight is to use a spreadsheet, either stand-alone or as
a computational aid to physical prototypes. The designer
writes the game rules in a scriptable spreadsheet, and has it
update game state as players take actions (Fullerton 2008,
pp. 216, 221, 246). This style of prototyping is best suited
to numerically oriented games, such as physical or economic
simulations. However, many of the elements used in physi-
cal prototypes do not transfer well to spreadsheets. Instead,
there are discrete cards and tokens, and rule systems with
many cases and spatial rearrangement of the tokens, rather
than equations that update numerical fields.

We propose a game-sketching approach to provide com-
putational support for the class of physical prototypes
that use board-game like elements to represent complex
videogames. Through this approach, game designers can ac-
cess formal analysis afforded by computational approaches
while designing prototypes similar to those made with phys-
ical methods. The designer specifies game state, possible
player actions, and state update rules. Elements of game
state can be mapped on to a simple set of board-game
primitives—connected spaces and tokens—and user actions
are mediated by UI affordances such as clicking and drag-
ging, constituting a fully playable game suitable for early
play testing. Using logical reasoning, we also allow the de-
signer to query formal properties of their sketch, such as get-
ting examples of possible gameplay traces resulting in spe-
cific outcomes (or using specific means to achieve these).
Our contribution is a technique that supports machine and
human play testing, using a single game-sketch definition,
to provide designers with the best of two complementary
sources of backtalk.

167

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference



Play testing background

What can designers get out of play testing, and why would
they need both kinds? We review discussions of human play
testing in the game design literature, and proposals for ma-
chine play testing in the artificial intelligence literature, to
provide a background for the kinds of design backtalk that
have been proposed as particular strengths of each approach,
especially as applied to early game prototyping.

Play testing with humans

Fullerton (2008, ch. 7) has an extensive discussion of early
prototyping and the kinds of design questions play testing
with them can answer. She describes four main stages of
prototyping. In the first, the designer focuses on founda-
tions, looking at only a loose version of the core mechanics
and avoiding filling in details like how many squares a player
can move; the designer self-tests to validate and flesh out the
design. In the second, the focus is on the game’s structure,
specifying rigid mechanics such as combat-resolution rules.
The third stage fills in formal details and tweakable con-
stants, such as starting health level and hit percentages, as
well as minor elaborations on mechanics. In the last stage,
the designer focuses on game flow and understanding how
features of the game contribute to the play experience.

Implicit in most discussions of play testing is that im-
portant elements of gameplay come from intrinsically sub-
jective human reactions. Koster (2004) focuses in particu-
lar on fun and engagement and their relation to an individ-
ual’s process of learning a game’s mechanics. Eladhari and
Mateas (2008) discuss feedback from paper prototypes test-
ing a game mechanic derived from personality theory, with
play tests focusing on how the mechanics connect to play-
ers’ personalities and subjective gameplay experiences.

Play testing with machines

Although the subjective human experience of games is the
key to their success, designing games involves crafting for-
mal rule systems and understanding how they operate as
well. Salen and Zimmerman (2004, ch. 12) discuss emer-
gent properties of game rules, since a small set of rules
might actually imply a larger set that are not explicitly spec-
ified; understanding these implications can help a designer
decide how to revise the game towards its intended sub-
jective experience. Since the formal properties of game
rules are amenable to automated reasoning, Nelson and
Mateas (2009) study what kinds of objective questions de-
signers would find useful to ask; automatically providing an-
swers to those questions would free up the designers to focus
on more subjective design issues.

Salge et al. (2008) apply artificial intelligence to play test-
ing, going as far as to argue that automatic testing can be su-
perior to human testing, because human testers instinctively
try to play in a balanced and fair style. An automated agent,
by contrast, could look for exploits in the game rules without
preconceived notions of how the game should be played.

Nelson and Mateas (2008) propose that designers proto-
type their early rule systems in a formal language, in ex-
change for which they can receive abstract gameplay traces.

Designer

Design
Insight

Game SketchAnalysis Engine Game Engine

play traces
implied properties

exploits
puzzle solutions

play traces
engagement

fun
hesitation

Formal Rule System Playable Prototype
human
subjects

constraints
and queries

Figure 1: Architecture diagram for the BIPED system.

These play traces may illustrate interesting or undesirable
gameplay possibilities that motivate a change, finding early
issues with the game rules before spending time on human
play testing (or even writing code for input and graphics).

System overview

The architecture of BIPED, with its dual support for human
and machine play testing, is shown in Figure 1. A designer
using our system begins by writing a game sketch. This
sketch is combined with an analysis engine to produce a for-
mal rule system on which the designer can perform machine
play testing. To do so, she specifies combinations of queries
and constraints and can get back abstract gameplay traces
with specific characteristics, determine implied properties
of the rule system, find exploits, and list solutions to puz-
zles. The sketch can also be combined with our game engine
to produce a playable prototype, which, when the designer
or human subjects she recruits play it, can give feedback
on more subjective properties of the game, such as player
engagement, fun, or hesitation, as well as traces of actual
gameplay. From these two sources of backtalk, design in-
sight may prompt the designer to perform another iteration.
We should emphasize that our approach focuses on early de-
sign prototypes, not late-stage prototype implementations of
a full game.

Game sketching language

Game sketches are defined in a subset of Prolog (chosen
for its clean, declarative style); an example defining an in-
ventory mechanic is shown in Figure 2. The designer can
use logical predicates and constants to specify the entities in
the game world and their properties. In this example, there
are two agents, the player character and a thief; as well as
two items, a bunch of loose coins and set of assorted gems.
Entire levels can be described in a similar manner, speci-
fying, for example, the rooms of a dungeon and hallways

168



agent(pc).

agent(thief).

item(loose_coins).

item(assorted_gems).

game_state(has(A,I)) :- agent(A), item(I).

game_event(drop(A,I)) :- agent(A), item(I).

terminates(drop(A,I),has(A,I)) :- agent(A), item(I).

possible(drop(A,I)) :-

holds(has(A,I)), agent(A), item(I).

Figure 2: Snippet of the game sketch language defining part
of an inventory mechanic. The last rule, for example, says:
the game event that an agent drops an item is only possible
if the agent has the item, for any agent or item.

between them.
A special set of predicates is recognized by the language.

These can be used to specify the dynamic parts of the sketch,
organized around game state and game events. The game
state is a set of properties that vary over time, under the in-
fluence of game events. The game engine and analysis en-
gine are implemented so as to provide a common semantics
for these predicates, ensuring what is possible in the human-
playable version is possible in the logical version and vice
versa. Returning to the example in Figure 2, the has game
state specifies, for any agent and item, whether the agent has
that item. The next rule specifies a drop event (for any agent
and item). The following rule gives the event’s effect: it ter-
minates the has state (sets it to false). The final rule specifies
that a drop event is only possible when the has state holds (is
true). Similar, but not shown in this example, are initiates,
which is analogous to terminates but specifies that an event
sets an element of game state to true; and conflicts, which
specifies restrictions on when events can happen simultane-
ously. The initially predicate can also be used to specify
the elements of game state that hold at the beginning of the
game.

Interface elements

To complete the prototype, a set of interactive visual el-
ements are available to specify a game’s playable represen-
tation. Based on the kinds of representations often used in
simple physical prototypes, the main interface elements are
clickable tokens and spaces, with optional connecting lines
between spaces. Figure 3 shows an example of the interface
presented to the player. Figure 4 gives a simple example of
setting up interface elements and connecting them to a game
world. In this code example, there is a visual board space
for every room in the game world (as well as a token for ev-
ery item). Clicking on a board space that represents a room
is set to trigger a move to event in the game world for that
room (similarly for tokens and grabbing of items).

As with actual physical prototypes, there are many ways
of using the visual elements to represent the state of the
game world, and mappings need not all be as direct as in this
example. Spaces can instead be used to represent inventory,
with tokens on the space representing items in the inventory;

Figure 3: Human-playable prototype for our example game.

ui_title(’My adventure game’).

ui_space(R) :- room(R).

ui_token(I) :- item(I).

ui_triggers(ui_click_space(R), move_to(R)) :- room(R).

ui_triggers(ui_click_token(I), grab(I)) :- item(I).

Figure 4: Bindings from UI elements to a game world.

or they can be buttons, with clicks causing a state change that
may be reflected in a different part of the visual representa-
tion; or space and token combinations can represent turns or
phases of the game (just as a physical dealer token is passed
around a poker table). Similarly, connecting lines need not
only represent how tokens can move between spaces; they
might represent other relationships between entities repre-
sented by the spaces, or elements on which a button would
operate when pressed. As a result of this flexibility, the de-
signer does need to recall that there is no automatic meaning
of the UI elements in terms of the game-world state: instead,
it is their responsibility to give the representation elements
game-relevant semantics.

In addition to the visible elements, our event system is a
major representational tool. Time in the game world logi-
cally stands still until an event happens. The only sources of
events are mouse interactions and expiration of timers. The
effect of a living game world can be achieved using a ticker
to create a regular stream of tick events, which can trig-
ger interesting game-world events. The ui triggers predicate
defines these mappings from mouse-interaction and timer
events to game-world events; it checks to ensure that it only
triggers game-world events if they are possible at the time.

We have been able to mock up a wide range of physi-
cal prototypes using this set of elements, and have avoided
introducing a larger range of special-purpose elements in or-
der to keep the prototypes simple and easy to modify. We
have, however, included a number of aesthetic elements that
do not directly represent game state, such as instructions, ti-

169



happens(fires_at(jack,right),0).

display_to(time(1),jill,health(2),enemies_at(right)).

display_to(time(1),jill,health(2),self_at(left)).

display_to(time(1),jack,health(1),enemies_at(left)).

display_to(time(1),jack,health(1),self_at(right)).

happens(fires_at(jill,right),1).

happens(frags(jill,jack),1).

display_to(time(2),jill,health(2),enemies_at(right)).

display_to(time(2),jill,health(2),self_at(left)).

Figure 5: Partial trace from a multiplayer shooter game pro-
totype, illustrating events and game state over time.

tle, victory/loss animations, and background music, that can
be used to provide an interpretive framework for the human
play testers. We acknowledge that aesthetics of even early-
stage prototypes can set the mood for the game and impact
the subjective play experience, even if they are not the main
focus (Sigman 2005). In particular, end conditions that sup-
port a subjective distinction between good and bad outcomes
are a key feature of games (Juul 2003).

Supporting play testing

To play-test games created using BIPED, the designer may
begin with either machine or human testing; we have found
that each process informs the other, so alternating between
them may be useful.

Human play testing often begins with self-testing. The
designer loads a game definition that she has created into
the game engine, and is presented with an initial playable
game. Even before mechanics are fully specified, it is often
gratifying to see on-screen a level previously only described
in the abstract. As the mechanics of a paper prototype are
added to the first computational prototype, many design de-
cisions have to be made to create the desired rigid rule sys-
tem. A lightweight cycle of revision followed by self-testing
can allow the designer to quickly flesh out these rules while
playing the game themselves, giving a first glimpse at the
gameplay possibilities afforded by their sketch.

When testing with others, it is important to formalize any
parts of the game that the designer may have been keeping in
their head during self-testing. By utilizing timers, on-screen
instructions, and background music, the designer can exter-
nalize the desired dynamics and mood of the game (e.g. fast-
paced and frenzied). Human play testing is best mediated by
the designer, who can then observe player engagement and
hesitation, as well as make verbal clarifications. Because
playable prototypes from BIPED are user-tweakable, stan-
dalone sketches, however, they can be sent to and played
by remote individuals as well (unlike physical prototypes or
computational prototypes with extensive dependencies).

Play testing with humans is a well established practice; in
contrast, play testing with machines is a relatively new, spec-
ulative idea. Thus, we have opted to focus on support for ex-
tracting gameplay traces, because these seem to be strongly

tied to player experience (as opposed to generating game-
playing agents).

A designer can specify scenarios and conditions, and the
analysis engine will provide her with gameplay traces (if any
exist) starting from those scenarios and meeting those con-
ditions. Figure 5 shows a short excerpt of a trace from a
multiplayer shooter prototype, in which an agent, interest-
ingly, inflicts damage on himself. To look for an exploit,
the designer might ask for traces starting in a particularly
tricky scenario, which end in victory only a few timesteps
later. If any traces exist, the designer has a specific example
of the behavior to forbid in the game rules; if not, the engine
has proved that no such exploit is possible (which would be
difficult to determine with certainty using only human play
testing). In cases where there are many uninteresting traces,
the designer can restrict the conditions in order to “zoom
in” on more plausible gameplay. Alternatively, the designer
can run experiments in which the scenario and conditions
are held constant, and some element of the rules is changed.
This gives the designer backtalk regarding a possible rule
change rather than more detailed inspection of a particular
rule set.

Implementation

Our implementation is primarily split between two en-
gines. The game engine, supporting human-playable pro-
totypes, was implemented in the Scala programming lan-
guage, which targets the Java Virtual Machine for easy re-
distribution of games. The rules of a particular game, im-
plemented in Prolog, are interpreted using jTrolog,1 a Pro-
log engine for Java, so game sketches can be modified by
end users without recompilation. The game engine exe-
cutes the game rules by advancing time in response to UI
events, querying Prolog to find whether visual elements have
changed (e.g. whether tokens have moved), and which ele-
ments of game state hold on the next time step.

The analysis engine, supporting the construction of
complete formal rule systems, was implemented in
Lparse/Smodels,2 an answer-set-programming toolchain.
Building on the work of Nelson and Mateas (2008), we used
a representation of game worlds in the event calculus, a log-
ical formalism for reasoning about time, and designed the
declaration of game state and game events so they map di-
rectly onto event-calculus fluents and events. A compiler
written in Prolog translates the game-sketch definitions into
answer-set programs usable by Lparse. Additionally, a small
Lparse “game engine” ties the rest of the game sketch (ex-
cluding UI) into the event-calculus semantics. The analysis
engine is also responsible for checking that a game sketch is
complete (defining a minimal set of required predicates) and
checking any additional designer-specified static properties
(e.g. there are no rooms in the level description without an
adjoining hallway).

An interesting result of this translation is that when the
analysis engine is looking for traces, it treats time as a sym-
bolic constraint rather than simulating game worlds forward

1https://jtrolog.dev.java.net/
2http://www.tcs.hut.fi/Software/smodels/

170



in time. In this way, it is as easy to put constraints on ini-
tial conditions as it is on end conditions, or on any point in
between. In the game engine behind human-playable proto-
types, logical time, while discrete, behaves much more in-
tuitively, advancing step by step in response to timers and
human interaction (effectively finding a single trace).

Example prototype

To exercise play testing with BIPED, we created DrillBot
6000 (previously illustrated in Figure 3). In this game, the
player moves a mining robot through underground caverns,
drilling out rocks of mixed value, while managing energy
usage by periodically returning to the surface to refuel and
trade items. This game was designed as if to be an early
prototype version of the popular Flash game Motherload
from XGen Studios.3 Our game focused on the core me-
chanics: moving around underground, mining, and refueling
(whereas Motherload includes shopping for upgrades and
story elements).

Game mechanics

To describe the mechanics of the DrillBot 6000 game world,
our sketch definition asserts that position and energy are el-
ements of game state (that apply to the one robot), and that
subterranean rocks can be present in a cavern, bagged in the
robot’s inventory, or possibly banked after trading. In terms
of game events, we allow mining of rocks, moving up or
down between caverns, refueling, trading rocks, and sponta-
neous energy drain. The game sketch also defines the con-
sequences of these events, and when they are possible. For
example, the mine event for a rock initiates the bagged state
for that rock, terminates its present state, and drains a unit
of energy. This mine event is possible if: the rock is present,
the location of the rock is reachable from the robot’s current
position, and the robot has energy. The rigid rules for other
game events are defined similarly. Finally, the definition as-
serts initial conditions: the robot starts fully energized at the
base, and all rocks are present.

UI bindings

While the game mechanics described above are enough to
allow machine play testing, for human testing we needed
to expose the abstract game world to the player. Caverns are
mapped to board spaces, and the up/down links between cav-
erns are visualized with connecting lines. Individual tokens
represent the minable rocks, and a special token represents
the robot itself. The UI event of clicking a rock’s token is
bound to the mine event for the corresponding rock. Like-
wise, clicking a cavern’s space is bound to either a move up
or move down event to that cavern. These bindings are ex-
pressed concisely without need to reiterate the necessary
conditions (e.g. the proper move up or move down event
is selected by virtue of the game-world definition of when
these events are possible).

We bound the position of rock tokens to cavern spaces
using the abstract level definition and the present status of

3http://www.xgenstudios.com/play/
motherload

the rock to select a space. When rocks are not present, the
player should have a way of knowing the rock’s bagged or
banked status. The additional spaces called inventory, bank,
and slag pile are used as the location for rock tokens that are
no longer present but have differing bagged or banked states
(valueless rocks cannot be banked, and their tokens are sent
flying to the slag pile with a quick animation). Spaces them-
selves are anchored to the board with an optional predicate;
these positions were consciously set to portray the direction-
ality of links between caverns.

To give our prototype an element of the time pressure
present in Motherload, there is a ticker for which the tick
event is bound to the game world’s drain event, draining a
unit of the robot’s energy. Thus, robot energy drains at a reg-
ular pace, but faster when the player actively triggers game-
world events that consume energy. Energy is replenished by
clicking on the base’s space, which triggers the game-world
refuel and trade events simultaneously.

A game definition also specifies several non-interactive
elements. A large title and background music set the tone
for a lively real-time mining game. On-screen, written in-
structions lay out both the premise of the game and explain
how the player can use the mouse to take actions in the world
of rocks, caverns, and a robot. Some elements of game state
not mapped to spaces and tokens are depicted textually, in
this case energy level and score. Finally, when the game de-
termines that no additional actions are possible, a few tokens
fly onto the screen to announce the game’s outcome.

Human play testing

As suggested by Fullerton (2008, p. 252), since we were
testing the foundations and structure of the game, we pri-
marily tested DrillBot 6000 by self-testing and testing with
confidants. Self-testing revealed that our early iterations had
allowed unintended gameplay; for example, you could mine
a rock at arbitrary distances. Additionally, we found the first
version of the game too simple, and decided to add several
additional rocks and caverns. When testing with others, one
tester initially felt pressured by the speed of the automatic
energy drain. While we could have adjusted the speed of
energy drain or the maximum energy level, at this stage of
the prototype we were interested in more foundational ques-
tions, rather than game balancing. To get feedback on the
game’s other mechanics, we showed the tester how to con-
vert the game to a turn-based one by removing the ticker.
All three testers claimed to enjoy the game, and could reach
rocks at the deeper levels after some practice. Interestingly,
no testers related to the game as a puzzle or path-planning
challenge, even in turn-based mode; all focused instead on
the action aspect of the game motivated by the continuously
draining energy.

Machine play testing

While human play testing validated that the game’s basic
concept was interesting, BIPED allowed us to turn to ma-
chine play testing to ask more detailed questions that would
have been tedious or impossible to test with human testers.
Because players focused on improving their speed, in ma-
chine play testing we decided to look at the limit case, corre-

171



sponding to a player that could execute several actions with-
out incurring any time-based energy drain (which was pos-
sible but difficult with our timer settings). This would allow
us to focus on the energy cost of mining and moving as the
limiting factors, effectively discovering speed runs.

In one experiment, we looked for gameplay traces that
maximized the number of treasures the robot could bank by
the end of a fixed number of timepoints. In 15 timepoints,
we found that the ideal player could bank up to five valuable
rocks. Then we asked about a player who would never re-
fuel, wondering if this would place some rocks out of reach.
Over this game length we found that the ideal player could
still bank five valuable rocks, indicating that refueling is
needed relatively infrequently. This was interesting, because
our human testers refuelled quite often, as a hedge against
energy drain, indicating that they were much more cautious
with managing energy than strictly necessary.

In the setup for this experiment, when looking at general
gameplay traces, we found undesirable traces in which sev-
eral rocks were mined simultaneously. This revealed that
we had not completely specified when game actions should
conflict. That issue was not revealed in human testing, be-
cause the UI bindings happened to make it impossible to
mine several rocks at the same time (which would not be
the case if mining had been tied to clicks on spaces instead
of on tokens). Finding that this design choice was incom-
pletely specified both forced us to think about what mechan-
ics we actually did want, and avoided the persistence of a
UI-masked bug that could reappear in later prototypes.

In another experiment, we looked at a few properties of
the level’s design. One question involved asking how many
caverns a player could explore in a given interval (where the
robot starts and ends in the base). This query is particularly
tedious to answer through human play testing, since it would
require trying a vast number of possibilities. It also goes be-
yond simple graph search, because it takes into account the
effects of time-varying presence of rocks due to mining. In
15 timepoints, a player can explore up to eight caverns be-
fore returning to the base. Making what we thought would
be a radical change to the level’s design, we added a di-
rect link from the base down to the deepest cavern in the
level. Running queries for reachable caverns and banked
rocks again, we were surprised to find this change made no
difference in the properties of the optimal play-through.

Conclusions and future work
We have proposed a computational prototyping approach to
combined support for human and machine play testing of
early-stage game sketches. This approach has been cached
out in BIPED, a tool that uses declarative game descrip-
tions to produce both standalone, playable games and for-
mal rule systems that admit automatically finding game-
play traces with specific properties (while minimizing de-
sign commitments, yet allowing sufficient interpretive affor-
dances to support useful human play testing). We explored
the process of designing with BIPED by prototyping Drill-
Bot 6000, an action-oriented game in the style of Mother-
load. In doing so, we illustrated the synergy of human and
machine play testing for insight into the game’s design.

The semantics of our game-sketching language are based
on a knowledge representation which is optimized for de-
signer exploration, while the syntax used here was chosen
in large part to minimize the distance to the two declarative
reasoning engines involved. In future work, we intend to ad-
dress the language’s accessibility, particularly to game de-
signers without a logic-programming background; it is best
to think of the language presented in this paper as an in-
termediate representation. In addition, future work should
investigate other reasoning backends for the analysis engine
with better scaling and numeric processing capabilities.

Several miscellaneous improvements to this approach
could be unified in a game-design “workbench” that bundles
all the tools necessary for a designer to carry out exploratory
game design, including a better query language paired with
more intuitive visualization of results. Additionally, such a
tool should provide a more fluid way of modifying a game’s
mechanics than editing a logic program.

A tool like BIPED is an interesting target platform for au-
tomated game generation research (whether aiming to create
whole new mechanics or just tweaking level designs). Mov-
ing beyond generation, the addition of detailed instrumenta-
tion to the human-playable prototypes would admit collect-
ing enough information from human play testers to inform
the analysis used in an intelligent game-design agent that
might learn from how humans play the games it produces.

Finally, an open problem is how to extend the human–
machine play testing approach to later stages of the game-
design process. For now, our approach is focused on al-
lowing designer-programmers to take large creative leaps by
getting rich feedback from simple, early-stage prototypes.

References
Eladhari, M. P., and Mateas, M. 2008. Semi-autonomous avatars
in World of Minds: A case study of AI-based game design. In
Proc. 2008 Intl. Conf. on Advances in Computer Entertainment
(ACE), 201–208.
Fullerton, T. 2008. Game Design Workshop. Morgan Kaufmann,
2nd edition.
Juul, J. 2003. The game, the player, the world: Looking for a heart
of gameness. In Proc. 2003 Digital Games Research Association
Conference (DiGRA), 30–45.
Koster, R. 2004. A Theory of Fun for Game Design. Paraglyph.
Nelson, M. J., and Mateas, M. 2008. Recombinable game me-
chanics for automated design support. In Proc. 4th Artificial In-
telligence and Interactive Digital Entertainment Conference (AI-
IDE), 84–89.
Nelson, M. J., and Mateas, M. 2009. A requirements analysis for
videogame design support tools. In Proc. 4th Intl. Conf. on the
Foundations of Digital Games (FDG).
Salen, K., and Zimmerman, E. 2004. Rules of Play. MIT Press.
Salge, C.; Lipski, C.; Mahlmann, T.; and Mathiak, B. 2008. Us-
ing genetically optimized artificial intelligence to improve game-
playing fun for strategical games. In Proc. Sandbox 2008 ACM
SIGGRAPH Videogame Symposium, 7–14.
Schön, D. A. 1983. The Reflective Practitioner. Basic Books.
Sigman, T. 2005. The siren song of the paper cutter: Tips and
tricks from the trenches of paper prototyping. Gamasutra. http:
//www.gamasutra.com/view/feature/2403/.

172


	AIIDE09
	Contents
	Index
	AAAI Website




