
Competitive Coevolution in Ms. Pac-Man

Andrew Borg Cardona, Julian Togelius and Mark J. Nelson

Abstract—In this paper we investigate the suitability of the
arcade game Ms. Pac-Man, as implemented in the recent
Pac-Man versus Ghost Teams Competition, as a testbed for
competitive coevolution. To that end, we explore competitive
co-evolution techniques to co-evolve Pac-Man and Ghosts team
controllers. We analyze in some detail the dynamics of evolution
between the two classes and compare them with single-objective
evolution and static controllers. We note differences between
evolutions of the two classes, having observed higher fitness
transitivity in Pac-Man than in the Ghosts. The problem of
finding a well-performing general purpose Pac-Man is far
different than that of finding a good and general Ghosts
controller.

Keywords: Coevolution, games

I. INTRODUCTION

Competitive coevolution is one of those methods within
computational intelligence which seems to hold immense
promise but has only a small number of practical successes,
and where it’s not quite clear what’s ailing the approach.
The basic idea in competitive coevolution is that you evolve
not against a static fitness function, but against another
population that uses the first population as a fitness function.
The goal is to set off an arms race, where the two populations
constantly compete to best one another, leading to truly
open-ended evolution. The inspiration comes from biology,
where e.g. foxes are locked in an arms race with rabbits:
foxes develop better prey detection, sneakier prowling and
faster running, and rabbits develop better predator detection,
more confusing escape strategies and faster running. How-
ever, when trying to implement competitive coevolution in
computer programs, researchers frequently run into a number
of show-stopping problems, such as cycling and loss of
gradient. Faced with these problems, most researchers turn
to the algorithm and try to construct a better competitive co-
evolution algorithm that will not have the same weaknesses.
However, one could also turn to the problem domain, and ask
whether it has the qualities that would allow for competitive
coevolution to work and an arms race to arise; and if not, one
could investigate what modifications to the problem domain
would increase the chances of seeing this happen. Perhaps
due to the focus on algorithm invention in computational
intelligence, this approach to the problems of competitive
coevolution is currently underrepresented in the literature. In
this paper we investigate the classic arcade game Ms. Pac-
Man, as implemented in the popular Pac-Man versus Ghosts
competition, as a testbed for competitive coevolution and
perform experiments in coevolving Pac-Men and Ghosts.

The authors are with the Center for Computer Games Research at the
IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen,
Denmark. email: {aboc,juto,mjas}@itu.dk

A. Competitive coevolution

Competitive coevolution leading to arms races in biology
was described by Dawkins and Krebs [1]. It is unclear where
the idea to implement this kind of evolution in silico first
originated, but probably the most prominent early success
was Hillis’ coevolution of sorting networks and testing prob-
lems, leading to much improved performance over simply
evolving sorting networks against static fitness functions or
even hand-crafting them [2].

An important paper by Rosin and Belew identified some
pathologies of competitive coevolution and suggested several
algorithmic enhancements [3] to overcome them. Of the
pathologies, two stand out. Loss of gradient happens when
one population becomes stuck in a minimum where all
individuals in the population perform equally badly, possi-
bly due to the other population developing individuals that
convincingly beat all the individuals in the first population.
Cycling refers to the phenomenon where the best individual
of some generation beats its competitor of the same gener-
ation, but not its competitor of an earlier generation, due to
intransitivity of the fitness function. (The phenomenon can
be understood by reference to the game rock, paper, scissors:
population A evolves rock, which makes population B evolve
paper, so population A evolves scissors, and population
B evolves rock...) The proposed solutions include various
versions of the concept of an archive or hall of fame,
where current individuals are compared against historical
individuals; or fitness sharing, where an individual’s fitness
depends not only on how well it does against particular
individuals of the opposing population but also on how
“unique” these individuals are.

Several authors have applied competitive coevolution to
predator–prey domains, coevolving one population of “preda-
tors” and one of “prey”. Nolfi and Floreano coevolved
such behaviors in physical robots, and found some evidence
of arms races but also plenty of cycling [4]. Stanley and
Miikkulainen evolved predators and prey in a simulated
environment, using the NEAT method for evolving neural
network-based controllers [5]. Results were encouraging but
there seemed to be an upper limit to the complexity of
strategies that were practically possible to evolve.

While the predator–prey paradigm involves asymmetric
coevolution, with individuals in the two populations having
markedly different abilities and affordances, others have
investigated different paradigms. Togelius and Lucas investi-
gated symmetric coevolution between racing car controllers
on a continuum between relative and absolute fitness [6]. In
further experiments using the car racing domain, Togelius et
al. investigated the effect of using multiple populations [7].



As evolution can be an effective way of doing (phylo-
genetic) reinforcement learning [8], competitive coevolution
is closely connected to the self-play training paradigm in
ontogenetic RL, where agents are trained by playing against
themselves. An early success was TD-Gammon [9], which
learned to play backgammon by playing against itself, using
a temporal-difference reinforcement-learning algorithm train-
ing a neural network through backpropagation, starting from
a randomly initialized policy. Success in this domain appears
to have depended strongly on features of the backgammon
domain in particular, however. A few years later, Pollack and
Blair [10] showed that a quite simple (perhaps even “naive”)
competitive coevolution approach, previously ignored due
to its relatively weak performance on most problems, did
surprisingly well at backgammon. Runarsson and Lucas [11]
further clarified experimentally that the diversity of oppo-
nents in self-play is a key feature for the paradigm to
be successful. They found that in games with less built-
in stochasticity than backgammon, evolutionary computa-
tion methods that explicitly maintain opponent diversity via
populations outperform agents trained via self-play using
reinforcement-learning methods. Such results reinforce the
importance of choosing the right opponent to evaluate against
in competitive coevolution.

B. Competitive coevolution testbeds

As discussed above, the properties of the problem domain
could well be at least as important as the properties of the
algorithm for successful coevolution. What, then, makes for
a good testbed for competitive coevolution? We suggest the
following properties.

• Depth of challenge. The task should not be trivial. It
is possible that the meager progress beyond the initial
stage in some previous predator–prey experiments was
due to there simply not being any substantially better
strategies for simple tasks.

• Smoothness of challenge. It needs to be possible to
develop from a trivial strategy to a very good strategy
in small increments. The evolved 3D simulated creature
representation used by Sims [12], and the similar repre-
sentation later used by Miconi [13], for “box grabbing”
seem problematic from this perspective. While it was
apparently relatively easy to evolve creatures perform-
ing a simple locomotion behavior to lunge forward
towards a box, the step towards more purposeful tactile
manipulation seemed unattainable for evolution.

• Fitness transitivity. The better a strategy is against some
other strategy, the better it should on average be against
other strategies. In other words, performance of an agent
against other agents should be correlated. This is exactly
the feature that the game of rock-paper-scissors does not
have.

C. Ms. Pac-Man

Ms. Pac-Man started out as an arcade game, developed
by Midway and released by Namco in 19821. It quickly
became very successful, and was ported to numerous home
computers and video game systems; modern adaptations are
occasionally released, and it remains one of the most popular
arcade games of all times.

The core game mechanics are simple. The player guides
Ms. Pac-Man through a maze filled with pills and power
pills. At any point, the player can choose to move up, down,
right or left, but can never move through walls. A level is
cleared when all pills have been eaten. Unfortunately, four
ghosts are haunting the maze and will kill the protagonist
upon contact. However, after eating a power pill, the tables
are turned for a short time, during which Ms. Pac-Man will
kill ghosts upon contact (they respawn at the centre of the
level). As the game progresses the speed increases, the speed
of the ghosts increases relative to Ms. Pac-Man’s speed, and
the length of the time a power pill works is diminished. The
challenge of playing the game derives from the combination
of quick reactions, route planning (optimising the route taken
to eat all pills can be seen as an instance of the travelling
salesperson problem) and of outsmarting the ghosts. In the
arcade version of the game, the ghosts follow a simple yet
somewhat unpredictable pattern, with the different ghosts
having distinct “personalities”.

The Pac-Man versus Ghosts Competition is an interna-
tional game AI competition organized by Rohlfshagen and
Lucas 2 [14]. The competition is based on a Java clone of
Ms. Pac-Man, which features an API for controlling both
Ms. Pac-Man and the ghost teams. The API provides a
representation of the game state every 40 ms of simulated
time (the game can be sped up to hundreds of times faster
than real-time), and asks the controller for the next move
to make. In 2011 and 2012, a large number of competitors
submitted either Pac-Man controllers, ghost team controllers
or both. Several of these submissions have been written up as
academic papers. Notable controllers include Ruck Thawon-
mas’ team’s controller ICE Pambush, winner of the IEEE
CEC 2009 Ms. Pac-Man Competition [15]. It was based on
a set of pre-defined rules and on the idea of luring then
ambushing ghosts. The controller has seen several updated
and alternate versions later on, including the ICEP-feat-
Spooks which incorporates and improves on the controller
Spooks by Daryl Tose. The Spooks controller attempts to
maximize the points from power pills and eating ghosts,
ignoring the attempt to clear pills efficiently. The latest ICE
Pambush version is the ICEP-IDDFS, which uses iterative
deepening depth-first search in the ICEP-feat-Spooks. Pepels
built a Monte-Carlo Tree Search Agent [16] with several
enhancements to improve search and achieve good decisions
within the time limit. Burrow and Lucas explored Temporal

1Ms. Pac-Man and its predecessor Pac-Man are similar, but there are
several differences. For our purposes the most important difference is that
Pac-Man is deterministic, whereas Ms. Pac-Man has random elements.

2http://pacman-vs-ghosts.net/



Difference Learning and evolution of MLPs (Multi Layer
Perceptrons) [17] to play Ms. Pac-Man and achieved notably
better results through evolution. Alhejali and Lucas [18]
have also evolved Ms. Pac-Man Agents but using Genetic
Programming; these controllers were shown to outperform
hand-designed controllers.

D. Ms. Pac-Man as a competitive coevolution testbed

In [14] it is suggested that Ms. Pac-Man is an excellent do-
main for competitive coevolution. Indeed, the comparison to
the predator-prey testbeds used by Nolfi and Floreano and by
Stanley and Miikkulainen comes naturally, as Ms. Pac-Man
is at its heart a predator-prey scenario. It seems obvious to
coevolve a population of Pac-Man and a population of ghost
teams. However, compared to the simple domains used by
previous authors, it adds much complexity through restricting
movement with a maze, adding the coordination challenge of
the four ghosts, and the occasional role reversal through the
power pills. Let’s examine Ms. Pac-Man according to the
criteria for a coevolution testbed discussed above.

• Depth of challenge. It seems clear that there is sufficient
depth of challenge in Ms. Pac-Man, given that compe-
titions are still taking place for the world championship
among human players, and that no AI controller has
been able to perform above intermediate human perfor-
mance.

• Smoothness of challenge. For Ms. Pac-Man controllers,
there would seem to be a very smooth transition from
essentially random play (which still scores above 0) to
world-class playing. The fitness metric, which is simply
the score, has a fine granularity. However, for the ghost
controllers there might be a risk of loss of gradient,
as there might be little score differences between a
bad ghost team controller and a less bad ghost team
controller when playing against a high-performing Pac-
Man controller.

• Fitness transitivity. It is very unclear to what extent good
Pac-Man playing is tied to specific ghost strategies.
The necessity of relatively domain-general skills such as
path planning for good playing would seem to indicate a
high degree of transitivity; however, it seems that some
ghost team controllers submitted to the competition
include highly specific behavior (such as “ambushing”
Ms. Pac-Man) that works well against some Pac-Man
controllers but not others.

E. Outline of the rest of the paper

In this paper we investigate the suitability of Ms. Pac-
Man as a competitive coevolution testbed. First, we devise
an evolvable controller architecture for both Pac-Man and
Ghost teams with sufficient complexity to display some-
what sophisticated strategies. We then investigate the ability
to evolve controllers using performance against two static
controllers as a fitness function. The performance of those
controllers are tested against both controllers they were
evolved against (training set) and controllers they were not
evolved against (testing set). In order to investigate fitness

transitivity, performance against several static controllers are
correlated. Next, we attempt competitive coevolution. Several
different schemes are attempted in an exploratory study, and
the most promising scheme is used for 10 evolutionary runs.
The best evolved controllers from single- and coevolutionary
runs are compared. At the conclusion of the paper, we discuss
what we can learn from these results about both the problem
and the method, and draw up some directions for future
research.

II. METHODS

A. Pac-Man controller architecture and representation

The Pac-Man controller implements a shallow MiniMax
search in the utility function, searching possible moves until a
junction in the maze. As an optimization to reduce branching
factor, the search does not always consider the range of
possible ghost moves that could take place in the interim.
If the ghost is edible or far from Pac-Man, a move is
assumed: towards Pac-Man if far away and the ghost is not
edible, or away from Pac-Man if the ghost is edible. A full
consideration of possible moves, however, is done when the
ghost is near Pac-Man and not edible. The search is limited
to a maximum of 60 game ticks, to avoid pathologically
poor performance when Pac-Man is in an area far from any
junction.

The utility function is a linear combination of the form

f(x) =

N∑
i=0

widi

where d represents a calculated distance or other value such
as number of pills eaten, and w represents its weight. N
is the total number of values taken from the current game
state. There are a total number of 34 values used in the utility
function, and thus 34 weights.

The genotype for Pac-Man directly represents the list of
weights that are used in the utility function. Each weight can
take a value from −1 to 1.

B. Ghost team controller architecture and representation

The controller for the team of ghosts is very similar to
the Pac-Man controller; its utility function runs a MiniMax
search that cuts off when either Pac-Man reaches a junction
or the maximum of 60 game ticks is reached. There are two
differences however. When a ghost must make a decision
(in a junction), every possible move is considered, even if
it is far from Pac-Man. This could potentially lead to large
branching factors when all four ghosts require an action in
the same tick, so the second difference is that in this special
case (four ghost decisions simultaneously), all four ghosts
are given random moves, adding a stochastic element to the
controller.

The form of the utility function, and the genotype repre-
sentation, are identical to those for the Pac-Man controller.



C. Static controllers

Various static controllers for both Pac-Man and the Ghosts
team were used either for the single-objective evolutions
or for testing and evaluating the evolution and co-evolution
results. Below is a summary of these controllers:

• Starter Pac-Man / Starter Ghosts: These are 2 basic
controllers included with the Ms. Pacman Vs Ghosts
framework. They implement a very simple state ma-
chine to decide the next move.

• Aggressive Ghosts: A sample controller that simply
hunts pacman, with occassional random moves.

• Legacy Ghosts: Another sample controller in which
each ghost has its own behavior, and measures its
next move towards Pac-Man based on different distance
measures.

• Legacy2TheReckoning Ghosts: A sample controller that
implements special conditions for dispersing or retreat-
ing from Pac-Man.

• Peterbb Ghosts: A simple yet effective Ghosts team
controller that uses an evolve-able scoring system for
guiding the moves. The scoring weights have been
evolved through multi-objective evolution.

• Memetix Pac-Man / Memetix Ghosts: Two well-
performing controllers by Daryl Tose. They are based
on breadth-first search and use several pre-defined rules
and scoring techniques to guide the moves.

• Mixmax Pac-Man / Starter Ex: This is another league
submission by Andrew Borg Cardona, implementing a
variation of the Minimax algorithm. Starter Ex pacman
is a combination of the Starter Pac-Man and this Mix-
Max Pac-Man, giving a challenge factor between the
two.

• Tilman: This controller is a basic implementation of the
MCTS within Pac-Man.

• ICEP IDDFS Pac-Man: A very strong Pac-Man based
on iterative deepening depth-first search, by Shirakawa,
Nakamura and Thawonmas. As of this date, this con-
troller ranks first in the Ms. Pac-Man vs Ghosts League.

D. Evolutionary algorithms employed

The weights for the utility function (defined on top of
the MiniMax search) are evolved using a (5+10)-ES evo-
lutionary algorithm, with Gaussian mutation applied to all
weights (standard deviation of 0.2) and without any crossover
operations. All algorithms are run for 50 generations.

For the single-objective evolutions, we use the cascading-
elitism algorithm [19] to evolve a population of ghosts and
a population of Pac-Man individually. A population of 15
ghosts is first evaluated against the Starter Pac-Man, and the
best 10 are evaluated against the stronger MixMax Pac-Man.
On the other hand, a population of 15 Pac-Man is evaluated
against the Starter Ghosts, and the best 10 are evaluated
against the Legacy Ghosts. The best 5 of each population
are used for mutation and pass to the next generation.

For the competitive co-evolution experiments, we explore
four different techniques and focus on one. The simplest

method involves evaluating a population of one class against
the elite of the competing class. Each evaluation consists
of playing the full game 20 times, with 3 pacman lives
and 16000 maximum game length. The individuals with
the highest average are selected. The second method is a
variation of this, but evaluates a population against the best
three of the competing class (playing three times as many
games). Selection is based on the sum of the average scores.

The remaining two methods make use of fitness sharing
and shared sampling, as suggested by Rosin and Belew [3].
The first of these two methods encourages diversity by
dividing the score of an individual against each competitor
by the total score of all individuals against that competitor
(three competitors are selected). We call this value the fitness
ranking, denoted by R. The calculation is represented below:

Rx =
∑
j

sxj
Sj

where Rx is the ranking of inidividual x, j is one of the
selected competitors, sxj is the actual score of individual
x against competitor j and Sj is the total score of all
individuals against competitor j.

The last method takes the same concept of fitness sharing
but excludes the individual’s own score from the total Sj .
The result is a further emphasis on diversity versus each
individual’s strength.

III. RESULTS

For the sake of brevity, each approach is given a short
name in the results. Single refers to the single-objective
evolution; Best refers to the simple competitive co-evolution
in which a population is tested against only one elite; Top 3
involves evaluation against the top three elites; Shared uses
fitness sharing and shared sampling; and Shared Excl uses the
variation of fitness sharing which encourages more diversity.

A. Preliminary explorations

For our initial experiments, we ran the single-objective
evolution once, and all the four co-evolution techniques once.
The elite of each generation in each experiment was then
evaluated 20 times against five static controllers (four in
the case of Ghosts). The results are averaged to produce an
overall performance index. Figure 1 displays the results for
Pac-Man evolution, while Figure 2 displays the Ghosts team
results.

In the case of the Pac-Man controllers, the single-objective
evolution beats all other techniques, although in interpreting
that result, it’s worth noting that the controllers used as
the target for single-objective evolution are also included
in the performance index. The Top 3 co-evolution and
the Shared Fitness Excl exhibit some erratic behavior, but
result in fairly good scores, just outperforming the Best co-
evolution. The Shared Fitness co-evolution displayed a much
slower evolution progress, with the worst performance of the
methods tested.

The results for the Ghosts team controllers are far less
smooth. In this case, the Top 3 co-evolution outperforms



Fig. 1. The average score of the Pac-Man elite of each generation of
all the five evolution techniques, played against five static Ghost team
controllers. Data is smoothed over a rolling average of 3 points. The dotted
line represents the single-objective evolution, while solid lines represent the
competitive co-evolution. Higher scores represent better Pac-Man perfor-
mance, i.e. better controllers.

Fig. 2. The average score of the Ghosts elite of each generation of all the
five evolution techniques played against four static Pac-Man controllers.
Data is smoothed over a rolling average of 3 points. The dotted line
represents the single-objective evolution, while solid lines represent the com-
petitive co-evolution. Lower scores represent worse Pac-Man performance,
i.e. better ghost controllers.

the single-objective evolution by a small margin towards the
end. Unlike the case of Pac-Man controllers, the Shared co-
evolution gave good results, along with the alternative Shared
Excl evolution. The Best co-evolution progresses nicely, but
suffers a large drop towards the last eight generations.

The preliminary explorations display various interesting
behaviors that can be analyzed in further detail. We have first

Fig. 3. Progress of the single-objective evolution for Pac-Man and for the
Ghosts team. Pacman controller fights for a higher score, while the Ghosts
team aim for decreasing the score.

taken the single-objective evolution and the simple Top 3 co-
evolution techniques and run further detailed tests on these
two.

B. Single-objective evolution

We ran the single-objective evolution 10 times for 50
generations and observed the evolution progress, illustrated
in Figure 3. There is a very similar trend in both classes,
with quick progress in the first 10 to 15 generations and
stabilizing thereafter.

We then evaluated the elites of each generation against
the five static Ghosts team controllers. The average scores
against each competitor are depicted in Figure 4 for Pac-
Man and in Figure 5 for the Ghosts team.

The Pac-Man controller produced in this experiment per-
forms well against Starter and Legacy2, which were involved
in the evolution process itself. It also performs well against
Legacy, but its strategy does not vary greatly from that of
Legacy2. Finally, Peterbb and Memetix controllers are very
strong controllers, and although the scores remain quite low
throughout, there is still steady, though limited, progress.

The Ghosts team easily kept the scores low for the
Starter and Mixmax Pac-Man controllers, which the Ghosts
were evolved against in this experiment. However the curve
stabilizes at a very early stage. When faced with the tougher
controllers, there was small but visible progress against
ICEP IDDFS, but hardly any against Memetix.

Table I shows a high correlation between the performance
of the Starter, Legacy and Legacy2 controllers, as expected.
There is a moderate correlation to the Peterbb and a very
low correlation between any competitor and Memetix. In the
case of the Ghosts, the correlations displayed in Table II are
significantly smaller, except for the case between Memetix
and ICEP IDDFS competitors.



Fig. 4. The average scores of each Pac-Man elite in each generation of 10
single-objective evolution runs.

Fig. 5. The average scores of each Ghosts elite in each generation of 10
single-objective evolution runs.

Starter Legacy Legacy2 Peterbb
Legacy 0.686 - - -
Legacy2 0.735 0.680 - -
Peterbb 0.593 0.606 0.607 -
Memetix 0.2 0.2 0.197 0.23

TABLE I
THE POPULATION CORRELATION COEFFICIENTS OF THE SINGLE

EVOLVED PACMAN VERSUS THE STATIC GHOSTS CONTROLLERS.

Starter Mixmax Memetix
Mixmax 0.272 - -
Memetix -0.001 0.042 -
ICEP IDDFS 0.0006 0.094 0.676

TABLE II
THE POPULATION CORRELATION COEFFICIENTS OF THE SINGLE

EVOLVED GHOSTS VERSUS THE STATIC PAC-MAN CONTROLLERS.

Fig. 6. The average scores of each Pac-Man elite in each generation of 10
Top 3 competitive coevolution runs.

C. Competitive coevolution

In this second detailed experiment, we focused on the
competitive co-evolution method that evaluates a population
of one class against the top three elites of the competing
class. We ran this method 10 times, and evaluated the elites
of each generation against the static controllers. The results
for Pac-Man are displayed in Figure 6, while those for the
Ghosts team are displayed in Figure 7.

The overall performance against the Starter, Legacy, and
Legacy2 controllers is quite good, although it fails to out-
perform the single-objective evolution. The same difficulties
are however encountered against Peterbb and Memetix.

Interestingly, the co-evolved Ghosts progress smoothly
against the Starter and Mixmax Pac-Man controllers, al-
though they do not outperform the single-evolved Ghosts
in these cases. However, co-evolution beats single-objective
evolution against the Memetix and ICEP IDDFS controllers,
despite once again showing little progress in the case of
Memetix.

The correlation coefficients for the performance of Pac-
Man controllers in Table III are generally higher than those
in Table I, particularly between any variable and Memetix. In
Table IV we again see a moderately high correlation between
the tough controllers Memetix and ICEP IDDFS, as was also
seen in the single-objective evolution. Interestingly we see
more anti-correlations as well.



Fig. 7. The average scores of each Ghosts elite in each generation of 10
Top 3 competitive coevolution runs.

Starter Legacy Legacy2 Peterbb
Legacy 0.762 - - -
Legacy2 0.803 0.711 - -
Peterbb 0.59 0.613 0.555 -
Memetix 0.339 0.403 0.32 0.475

TABLE III
THE POPULATION CORRELATION COEFFICIENTS OF THE COMPETITIVELY

EVOLVED PACMAN VERSUS THE STATIC GHOSTS CONTROLLERS.

Finally, we tested the final elite of each evolution technique
against each other. In Table V, Sp represents the single
evolved Pac-Man, Cp represents the co-evolved Pac-Man,
Sg is the single evolved Ghosts team and Cg is the co-
evolved Ghosts team. The co-evolved controllers successfully
outperform the single evolved controllers.

IV. DISCUSSION

A few high-level patterns in our results are clear. From
our investigation, the Ms. Pac-Man problem has rather

Starter Mixmax Memetix
Mixmax 0.268 - -
Memetix -0.312 -0.23 -
ICEP IDDFS -0.189 0.064 0.657

TABLE IV
THE POPULATION CORRELATION COEFFICIENTS OF THE COMPETITIVELY

EVOLVED GHOSTS VERSUS THE STATIC PAC-MAN CONTROLLERS.

Sp vs Sg Cp vs Sg Sp vs Cg Cp vs Cg

6228.7 10883.7 4775.5 6753.1

TABLE V
THE AVERAGE RESULTS OF RUNNING THE LAST ELITE IN EACH

EVOLUTION TECHNIQUE AGAINST ITS COMPETING EVOLVED
CONTROLLERS.

different characteristics for Pac-Man controllers and for
ghost team controllers. Overall, it seemed much easier to
evolve good controllers, both in a coevolutionary and a
single-evolutionary mode, for Pac-Man than for ghost teams.
Another somewhat puzzling difference is that the single-
objective approach performed better than coevolution for
Pac-Man, whereas the opposite was true for ghost teams.

In order to assess fitness transitivity, we correlated the
performance of controllers against several static controllers.
Remarkably, these correlations were always strongly positive
for Pac-Man, but smaller and occasionally negative for
the ghost teams. This effect is clear regardless of whether
controllers were trained with coevolution or single-objective
evolution. A conclusion that can be inferred from these
results is that fitness transitivity is higher for Pac-Man than
for ghost teams. It is not clear why that would be the case.
It could be that all ghost team strategies at this performance
level are similar, whereas Pac-Man strategies at this level
are different, with some clearly superior. Or, it could reflect
the possibility that ghost team strategies are inherently more
brittle. In any case, the discrepancy is a problem that needs
to be investigated further, as it is likely to impede further
coevolutionary experiments.

Overall, single-evolved controllers performed better than
coevolved controllers. However, coevolved ghost teams per-
formed better than single-evolved ghost teams when played
against controllers not used in evolution, signifying a slight
increase in generalisability.

All experiments in this paper used the same number of
fitness evaluations. However, coevolution seems to have a
slower evolution progress than single-objective evolution.
That would mean that running evolution longer (for instance,
100 generations) might give additional benefit to co-evolution
compared to using the same number of generations for all
methods. Single-objective evolution sees little progress after
around 30 generations (the curve stabilizes), and it is not
likely to benefit much from running more evaluations in the
same way.

One aspect that has not been discussed much is the role of
the controller architecture and representation. It is possible
that the current architecture is more suited to control Ms.
Pac-Man than to control ghost teams, and that the fitness
landscape it induces makes it hard to find good ghost-team
controllers.

With this work, we hope to have laid groundwork for
further, more systematic study of the possibilities of co-
evolution in this domain, by investigating the properties of
Ms. Pac-Man’s Ghosts vs. Pac-Man domain as a testbed for
competitive coevolution.

V. ONGOING AND FUTURE WORK

Looking at the somewhat surprising results, particularly for
the ghosts, we created, evolved and tested a new controller
architecture. Instead of using a linear combination in the
utility function of the MiniMax, a Multi Layer Perceptron
(MLP) was implemented to introduce non-linearity. Due to
the resulting increase of dimensions, the distance measures



were simplified and the CMA-ES algorithm was used with
all evolution and co-evolution types.

The elites of each evolution type was tested against static
controllers in a tournament style against elites of the linear
controller. In the case of Pac-Man, the MLP has performed
consistently better than its linear counterpart. In the case
of the ghosts however, the MLP seemed to deteriorate the
performance for all evolutions.

In another experiment, we took the genotypes of the elites
of each generation for the single-objective evolution of Pac-
Man - one that showed a steady evolution progress - and
inversed all the weights. These inversed weights were tested
as Ghost controllers. Interestingly, the resulting performance
was a very poor one, with no sign of evolution progress.

Even though the distance measures used for both Pac-Man
and the Ghosts were identical, the problem of finding a set of
weights to form a good strategy seems to difer significantly
between the two. Several reasons might be behind this, which
might be worth exploring further. One such reason is the
game logic itself. Pac-Man’s decisions happen after each
game-tick to choose any new direction of movement. The
Ghosts on the other hand, besides consisting of controlling
four agents rather than one, cannot take decisions unless in
a junction. Furthermore, the stochastic element in the game
directly effects the ghosts by reversing their direction. These
might cause higher variances in the scores which result in
ambiguities during evolution and could direct evolution in
the wrong direction.

It would be interesting to explore how co-operative co-
evolution of the Ghosts might help or overcome these prob-
lems, such that each Ghost is a self-controlled agent whose
fitness is based on its performance along a set of other
Ghosts.

We also plan to conduct a more detailed analysis of
cycling in the coevolutionary process. Further on, we plan
to investigate the use of competitive coevolution to create
ensembles of controllers with noncorrelated playing styles,
and to introduce evolution of mazes as a third population.

VI. CONCLUSION

This paper investigated Ms. Pac-Man as a testbed for com-
petitive coevolution. A controller architecture was devised,
and experiments were undertaken with both single-objective
evolution and coevolution. It was found that competitive Pac-
Man controllers could be evolved using both approaches,
but that results were much more mixed for ghost team
controllers. Fitness transitivity, i.e. how much a solution’s
performance over several other solutions correlated, was
found to be much higher for Pac-Man than for ghost teams,
presenting a potential problem for competitive coevolution.
Some evidence was found that coevolved controllers gen-
eralised better than single-evolved controllers, leading to a
modest-confidence conclusion that this domain provides an
interesting opportunity to study the emergence of arms races.
Overall, Ms. Pac-Man appears to be a promising testbed for
competitive coevolution, with a number of exciting future
research projects possible.

ACKNOWLEDGEMENTS

The first author was supported by the Strategic Educational
Pathways Scholarship Scheme (Malta). The scholarship is
part-financed by the European Union European Social Fund.

REFERENCES

[1] R. Dawkins and J. R. Krebs, “Arms races between and within species,”
Proceedings of the Royal Society of London B, vol. 205, pp. 489–511,
1979.

[2] W. D. Hillis, “Co-evolving parasites improve simulated evolution
as an optimization procedure,” in Proceedings of the ninth annual
international conference of the Center for Nonlinear Studies on Self-
organizing, Collective, and Cooperative Phenomena in Natural and
Artificial Computing Networks on Emergent computation, 1990, pp.
228–234.

[3] C. Rosin and R. Belew, “New methods for competitive coevolution,”
Evolutionary Computation, vol. 5, no. 1, 1996.

[4] S. Nolfi and D. Floreano, “Coevolving predator and prey robots: Do
”arms races” arise in artificial evolution?” Artificial Life, vol. 4, pp.
311–335, 1998.

[5] K. O. Stanley and R. Mikkulainen, “Competitive coevolution through
evolutionary complexification,” Journal of Artificial Intelligence Re-
sarch, vol. 21, pp. 63–100, 2004.

[6] J. Togelius and S. M. Lucas, “Arms races and car races,” in Proceed-
ings of Parallel Problem Solving from Nature. Springer, 2006.

[7] J. Togelius, P. Burrow, and S. M. Lucas, “Multi-population competitive
co-evolution of car racing controllers,” in Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), 2007.

[8] J. Togelius, T. Schaul, D. Wierstra, C. Igel, F. Gomez, and J. Schmid-
huber, “Ontogenetic and phylogenetic reinforcement learning,” Kuen-
stliche Intelligenz, 2009.

[9] G. Tesauro, “Temporal difference learning and TD-gammon,” Com-
munications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[10] J. B. Pollack and A. D. Blair, “Co-evolution in the successful learning
of backgammon strategy,” Machine Learning, vol. 32, pp. 225–240,
1998.

[11] T. P. Runarsson and S. M. Lucas, “Co-evolution versus self-play
temporal difference learning for acquiring position evaluation in small-
board go,” IEEE Transactions on Evolutionary Computation, pp. 628–
640, 2005.

[12] K. Sims, “Evolving 3d morphology and behavior by competition.” in
Proceedings of Artificial Life IV, 1994.

[13] T. Miconi and A. Channon, “The n-strikes-out algorithm: A steady-
state algorithm for coevolution,” in Proceedings of the IEEE Congress
on Evolutionary Computation, 2006, pp. 1639–1646.

[14] P. Rohlfshagen and S. M. Lucas, “Ms pac-man versus ghost team
cec 2011 competition,” in Proceedings of the 2011 IEEE Congress on
Evolutionary Computation. IEEE, 2011, pp. 70–77.

[15] R. Thawonmas and H. Matsumoto, Proc. Asia Simulation
Conference 2009 (JSST 2009), 2009. [Online]. Available:
http://www.ice.ci.ritsumei.ac.jp/ ruck/PAP/jsst09-matsumoto.pdf

[16] T. Pepels and M. H. M. Winands, “Enhancements for monte-carlo tree
search in ms pac-man,” in CIG. IEEE, 2012, pp. 265–272.

[17] P. Burrow and S. Lucas, “Evolution versus temporal difference learning
for learning to play ms. pac-man,” in Computational Intelligence and
Games, 2009. CIG 2009. IEEE Symposium on, Sept., pp. 53–60.

[18] A. Alhejali and S. Lucas, “Evolving diverse ms. pac-man playing
agents using genetic programming,” in Computational Intelligence
(UKCI), 2010 UK Workshop on, Sept., pp. 1–6.

[19] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic
personalised content creation in racing games,” in Proceedings of the
IEEE Symposium on Computational Intelligence and Games, 2007.


