
2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 1

Orchestrating Game Generation
Antonios Liapis1, Georgios N. Yannakakis1, Mark J. Nelson2, Mike Preuss3 and Rafael Bidarra4

Abstract—The design process is often characterized by and
realized through the iterative steps of evaluation and refinement.
When the process is based on a single creative domain such
as visual art or audio production, designers primarily take
inspiration from work within their domain and refine it based
on their own intuitions or feedback from an audience of experts
from within the same domain. What happens, however, when
the creative process involves more than one creative domain
such as in a digital game? How should the different domains
influence each other so that the final outcome achieves a har-
monized and fruitful communication across domains? How can
a computational process orchestrate the various computational
creators of the corresponding domains so that the final game has
the desired functional and aesthetic characteristics? To address
these questions, this article identifies game facet orchestration as
the central challenge for AI-based game generation, discusses its
dimensions and reviews research in automated game generation
that has aimed to tackle it. In particular, we identify the
different creative facets of games, we propose how orchestration
can be facilitated in a top-down or bottom-up fashion, we
review indicative preliminary examples of orchestration, and we
conclude by discussing the open questions and challenges ahead.

Index Terms—AI-based Game Generation, Procedural Content
Generation, Computational Creativity, Orchestration.

I. INTRODUCTION

GAME design lies at the intersection of a multitude of
creative domains, from art and music to rule systems and

architecture. These domains influence each other, with flashy
visuals reinforcing a fantasy narrative and creepy background
sounds adding to the player’s tension during gameplay. While
the multifaceted nature of games is a great blessing for their
aesthetic expressiveness and functional capacity, it is arguably
a curse for algorithmic processes that attempt to automate the
generation of games. It is one thing to be able to generate a
good level, and another thing to be able to generate a level
with appropriate sound effects, narrative, and game rules; the
latter is several magnitudes more challenging than the former.

By decomposing games into creative facets (visuals, audio,
narrative, rules, levels and gameplay), we can simplify the
problem of game generation and allow algorithms to treat each
facet independently. Each game facet, such as a level or a
ruleset, offers a controlled area for our exploration. Due to
the evident benefits of simplicity and controllability, the focus
of commercial games and academia on procedural content
generation (PCG) has so far been on generating a single
creative facet of a game (e.g. a level generator) [1]. In this

1 Antonios Liapis and Georgios N. Yannakakis are with the Institute of
Digital Games, University of Malta.

2 Mark J. Nelson is with The MetaMakers Institute, Falmouth University.
3 Mike Preuss is with the University of Muenster.
4 Rafael Bidarra is with Delft University of Technology.

article we argue that the dominant practice of designing a
generator for a specific type of content has been detrimental
to the grand vision of PCG: the generation of complete
games. When designing a map generator for the strategy game
StarCraft (Blizzard 1997), for instance, it is easy to completely
ignore the remaining components of the game that contribute
to the level generation per se. Components such as the cost and
speed of units, the progression of both difficulty and storyline
from one map to the next, or even the color palette of the map’s
tiles are overlooked. Even in generators of a broader scope
and less specificity [2], certain gameplay patterns such as the
need of balance in a multi-player shooter game are presumed
to come with the genre. When generating complete games,
however, the computer should be able not only to generate
all of those components but also to reason whether generated
content of one type (such as visuals) aligns well with generated
content of a different type (such as game rules).

In this article we put a particular emphasis on the process
we name orchestration which refers to the harmonization of
the game generation process. Evidently, orchestration is a
necessary process when we consider the output of two or more
content type generators—such as visuals and audio—up to the
generation of a complete game. To support our definition and
argue for the importance of orchestration for computational
game design, we use the music domain as our core metaphor
throughout this article. The orchestration process in music can
take various forms that are inspiring for computational game
design. Music orchestration often takes the form of a composer
(i.e. an overseer of each instrument’s output) who makes sure
that musical instruments follow a designated pattern of rhythm,
tempo and melody as represented through notes and symbols
in the composer’s pentagram. The composer is ultimately
responsible for the final outcome. On the other end of the
spectrum, orchestration can take the form of improvisation
or jamming, as in freeform jazz or the urban blues. While
jamming, musicians try to adapt to the rhythmic and melodic
patterns followed by the rest of the band; as a result, or-
chestration is a property that emerges from the interactions
among musicians and the outputs of their instruments. The
first orchestration paradigm can be defined as a top-down,
composer-driven, process whereas the latter paradigm can be
viewed as a bottom-up, freeform process. Various hybrids
between the two paradigms are possible: for instance, a well-
rehearsed and structured song with an improvisational guitar
solo part. Figure 1 depicts this granular relationship between
top-down and bottom-up via a gradient-colored arrow. Top-
down and bottom-up processes for AI coordination have been
researched extensively outside of games, and will be used as
grounding for our proposed orchestration frameworks.

Music orchestration appears to be an ideal metaphor for

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 2

FROM WHERE?
input

HOW?
process

FOR WHOM?
end-user

top-down

bottom-up

human
creator

human-based
computation

embedded

player

designer

WHAT?
output

interactive

non-
interactive

game facets

Fig. 1: The key questions of facet orchestration.

describing the orchestration process of game design. During
game design, the various types of game content can be coordi-
nated, on one end, by a game designer or game director: this is
a typical top-down process followed by e.g. AAA studios. On
the other extreme, game design can be coordinated internally
by the different game content designers: e.g. during a game
jam. In this article we argue that AI-based game generation
can benefit from following the orchestration patterns met in
human game design (and in music creation). In a similar
fashion, computational creators could be orchestrated by an
agent that acts as the game director or, instead, self-organize
and internally harmonize their creative processes. Hybrids
between the two extremes (top-down vs. bottom-up) are also
relevant for AI-based game generation.

By now it should be obvious that orchestration for game
generation is both a hard and an interesting challenge [3],
[4]. It is a hard problem as it must not only coordinate
and initialize multiple dissimilar generators, but it must also
ensure that the result is coherent among all game facets.
Coherence evaluation is a major challenge—even in single
creative domains such as art—and to solve it fully would
require human-level intelligence (making it an AI-complete
problem). However, this paper proposes several shortcuts
based on the typology of Fig. 1 for ensuring coherence through
a hierarchical generation with human-authored associations in
a top-down process, through semantic labels which can be
linked together through human-based computation (e.g. via
Glunet [5]), through machine learned patterns across facets
from online content such as gameplay videos and reviews,
or through human intervention during orchestration. It is an
interesting problem as it potentially realizes the grand vision
of generative systems in games: the generation of complete
games [3], [4]. Given the recent progress of machine and deep
learning as a generative process, the ever-expanding repository
of semantically annotated open data, and the growing number
of academic embryos in this direction, we argue that this is the
ideal time to actively discuss orchestration and its challenges
in greater depth.

This article places the first stepping stone towards game

orchestration by questioning what can be orchestrated and how
it can be done, where the process is inspired or initiated from
and, finally, for whom the final outcome of orchestration is.
Answering these questions yields a computationally creative
process that has an input and an output, and targets a class
of end-users. Figure 1 depicts what we consider the core
dimensions for defining game orchestration: from its input to
the end-user. Accordingly, this article is structured along these
core dimensions. In particular, the six facets of game content
to be orchestrated (i.e. what?) are elaborated in Section II.
Then, the three types of input (from where?) are discussed
in Section III, including direct input from a human creator,
input from online sources (as human-based computation) and
input that is already embedded in the generative process.
How orchestration can take place—along with related work
on AI coordination—is discussed in Section IV, while how
humans can intervene in this process is discussed in Section V.
More specifically, Section IV explores the spectrum between
top-down and bottom-up approaches; Section V explores the
degree of human intervention in the process (from non-
interactive all the way to continuously interactive). The types
of intended end-users (for whom?) are briefly presented in
Section VI. In the context of facet orchestration, Section VII
describes some influential work which combines generation
across facets, with a comparative analysis in Section VIII.
Open questions and challenges are sketched out in Section
IX and the article concludes with Section X.

II. CREATIVE FACETS OF GAMES

Games are traditionally realized by a team of creative
individuals with different skillsets and team roles. Based on
the taxonomy of [4], the following subsections detail the six
creative facets of games from the perspective of both human
creativity and AI-based generation.

A. Visuals

As most digital games are rendered on a display, their
visual representation is an important component and often
a selling point. Game visuals range from photorealistic to
abstract, and everything in-between [6]. Many games rely
on the photorealistic depiction of real people, e.g. in FIFA
(Electronic Arts, 2017) or imaginary people and locations, e.g.
in Skyrim (Bethesda, 2011). On the other hand, games often
rely on the exaggeration of caricatures, either to offer visual
cues even in low resolution, e.g. in the extraordinarily large
weapons in Final Fantasy VII (Square Enix, 1997), or to elicit
a specific emotion as in dark, grayscale representations of the
unfriendly world of Limbo (Playdead, 2010).

Algorithmically generated visuals originated around math-
ematical models of noise [7], which were instrumental for
the procedural generation of many visual features, from tex-
tures [8] to terrain [9]. According to the type of features
needed in a game world, a large variety of procedural model-
ing methods and techniques has been proposed to generate
them [10]. Most methods for generating visuals are based
on computer graphics techniques; however there have been
a few attempts at AI-based generation of visuals, such as

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 3

Fig. 2: The creative facets of games.

the evolution of graphic shaders towards a designer-specified
color palette [11], procedural filters based on semantics for
slight visual changes to modeled scenes [12], and evolution
of arcade-style spaceships towards visual properties such as
symmetry, simplicity and other patterns [13].

B. Audio

While often under-estimated, a game’s audio plays a sig-
nificant role in the feel and mood of a game [14]. Back-
ground audio can set players at ease with rhythmic repetitive
sequences, as in the case of Moon Hunters (Kitfox Games,
2016), or increase their tension with staccato cacophonous
string instruments as in Amnesia: The Dark Descent (Frictional
Games, 2010). Moreover, the fast heavy metal tracks of Doom
(Bethesda, 2016) indicate moments and locations of high
challenge but also energize the player to perform the frantic
run-and-gun gameplay necessary to overcome this challenge.

In terms of procedural sound, Proteus (Key and Kanaga
2013) uses the player’s current location and viewpoint to turn
on and off certain pre-written and carefully designed sound
channels, thus changing the soundscape. Other work, such as
Sonancia [15], choose from a range of pre-written sound tracks
to play at specific events or areas of a game. Finally, Scirea
et al. [16] use music generated in real-time to foreshadow
game events according to a pre-written narrative arc. Earlier
examples of procedural music in games are surveyed in [17].

C. Narrative

While not all games require an elaborate narrative, a
plethora of large-scale games feature an extensive storyline to
connect the different locales and quest lines. The motivation to
play and complete the game is often built around an in-world
narrative. Role-Playing Games such as Planescape: Torment
(Black Isle, 1999) are especially grounded in the lore of an
elaborate world, and introduce non-player characters with a
rich backstory and personal growth throughout the game.

In terms of algorithmic narrative generation or mediation,
there is extensive work in interactive narrative and drama
management [18]; games such as Façade [19] and Prom Week
[20] model the game state in a way that allows the manager
to choose which NPCs utter which lines of pre-authored
dialogue. A recent survey [21] has pointed out that a stronger
orchestration between plot and level generation techniques

has a huge potential and impact on the authoring process of
computational narratives for games.

D. Levels

Just as most digital games are displayed visually, their
gameplay takes place in a virtual space. This virtual space
is identified as a game level and can range from the extremely
simple in Pong (Atari, 1972) to the labyrinthine in Dishonored
(Arkane, 2012). A game may consist of numerous short levels,
e.g. in Super Mario Bros. (Nintendo, 1985), or take place in
one level spanning galaxies, e.g. in Stellaris (Paradox, 2016).
Game levels need to combine form and function: the former
should aid navigation via memorable, visible landmarks, while
the latter should constrain the paths of players (e.g. forming
chokepoints in strategy games). Exceptions to these level
design patterns abound: the horror feel of Amnesia: The Dark
Descent is enhanced by low lighting and winding corridors
which limit visibility and increase the chance of “jump scares”.

Level generation is by far the most popular domain of PCG
in games, both in academia and in commercial titles of the last
35 years, from Rogue (Toy and Wichman, 1980) to Civilization
VI (Firaxis, 2016). Level generation can be performed in a
constructive manner [22] and via many other methods such as
generative grammars [23], artificial evolution [24], declarative
modeling [25], and constraint solving [26].

E. Rules

Regardless of the level they are in, players are bound by
the game’s rules and have access to its mechanics. Mechanics
allow the player to interact with the world [27] and are usually
described as verbs [28] such as “jump” in Super Mario Bros.
or “take cover” in Gears of War (Epic Games, 2006). On the
other hand, game rules determine the transition between game
states, e.g. after a player uses a mechanic. Some rules may
lead to winning or losing, e.g. if Pac-man eats (mechanic) the
last pellet in Pac-Man (Namco, 1980) then the level is won
(rule), or if Mario fails to jump (mechanic) over a gap in
Super Mario Bros. then they lose a life (rule). While rules are
different from mechanics, as “rules are modeled after [player]
agency, while mechanics are modeled for agency” [27], for
brevity we use the term “rules” for this facet in the typology
to include mechanics, rules, winning and losing conditions etc.

AI-based generation of rules and mechanics is one of the
most challenging aspects of game generation [29], not only
because they greatly affect the playability of the game but
also because arguably their quality can only be assessed via
playtesting. Ludi evolves interaction rules in board games
[30], [31], and is analyzed in Section VII. In digital games,
several early attempts at automated game design have focused
on abstract arcade games, generating movement schemes and
collision rules based on designers’ constraints [32] or based
on the ability of an AI controller to learn the game [33].

F. Gameplay

While the other facets focus on how a team of human or
computational developers create a game, the experience of the

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 4

end user playing through the game cannot be ignored. Sicart
specifies that “gameplay, or the experience of a game, is the
phenomenological process of an epistemic agent interacting
with a formal system” [34, pg. 104]. Each player interprets the
visuals, level structures, narrative and game rules in their own
way, based as much on cultural and ethical preconceptions
as on their in-game decisions (e.g. the order in which they
visit locales in an open-world game such as Skyrim). The
game’s mechanics are pre-scripted when the player launches
a game for the first time; however, when the mechanics are
combined together and used to advance players’ ad-hoc goals
or approaches, they can lead to emergent dynamics [35].
Such dynamics can be influenced by social and competitive
concerns on the part of the gamer community, which can lead
to an ever-changing metagame [36] of strategies and counter-
strategies. In extreme examples, players exploit unforeseen
ramifications of the game rules in order to bypass the intended
challenge. An exemplar player exploit (turned emergent game
mechanic) is “rocket-jumping”, where a player shoots a rocket
at the ground, receiving damage and propelling through the
air by the blast. Rocket jumping allows players to travel faster
(breaking movement speed restrictions in the game rules) or
access unreachable areas (breaking the intended level design
limits). Beyond the primarily functional concerns of dynamics,
however, the interaction among all facets (and especially
visuals and audio) can evoke strong emotional responses by
the player. These responses range from basic emotions such
as fear and joy [37] or a broader range of aesthetics such as
sensation and discovery [35]. While the intended emotions and
aesthetics of players can be designed a priori, they can only
be elicited during gameplay and may vary immensely from
player to player and from those imagined by the designer.

Simulating human play via computational processes is the
primary goal of AI agent control, which is the oldest and most
popular field in game AI research [38]. Most important to
our perspective of generator orchestration is the challenge of
automated playtesting, where AI agents can learn to play any
type of generated game and evaluate its quality (in terms of
e.g. playability, fairness, memorability, uniqueness and more).
Gameplay logs produced by AI agents are often used to
derive the quality of generated content, e.g. in simulation-
based fitness functions [24] for evolving game levels. In
such simulations, the AI playtester often attempts to follow
the optimal strategy to achieve the designated goal (such as
gaining maximum score), e.g. when creating levels for an AI
competition [39]. Such AI playtesters simulate an achiever
type of player [40] or presume an aesthetic of challenge [35].
Assessing challenge does not require objectively optimal agent
behavior, however. Artificial drivers [41] have attempted to
maximize “objective” efficiency (i.e. distance covered in a
preset time) while minimizing deviations from captured player
data in terms of steering and acceleration; this project attempts
to more closely match how human players approach this
challenge. In other work on AI playtesting, a broader set of
agents attempt to solve the MiniDungeons puzzle game [42]
targeting different objectives, such as collecting the largest
treasure or taking the least steps. In this way, the notion
of performance is personalized based on the priorities of

players; the artificial playtraces of such agents can then be
compared with human traces in order to classify players into
“archetypical personas” akin to [40].

G. Meta-Facet Issues

So far, we have attempted to categorize elements of games
into the six general facets of Fig. 2. However, we acknowledge
that not all elements of games can be described in this way,
and some elements seem not to fit under just one facet. We
now attempt to address these more contentious issues.

1) The Question of Blurred Borders: It is expected that
any game, as a multi-faceted experience, would have unclear
distinctions between the different elements of visuals, audio,
etc. Since level design combines form and function, the
borders between level and visuals become somewhat blurred.
For example, a level in Amnesia: The Dark Descent has
carefully placed lights: the rest of the level consists of dark
shadows. The placement of lights is strategic, as it forces the
player along specific pathways. However, lighting and ambient
brightness are directly tied to the game’s visuals, renderer
settings etc. In this case, the placement of lights is as much a
part of the level design as it is of the game’s visuals.

A more ubiquitous instance of blurred borders is gameplay.
While a designer defines rules and mechanics, how these me-
chanics will be used—or the rules be exploited—by the player
is a part of gameplay. Following the Mechanics-Dynamics-
Aesthetics framework [35], the borders between rules and
gameplay become even more blurred: while defining the
mechanics is firmly part of the rules facet, the designer should
anticipate how mechanics will be used or combined (into
dynamics) in order to balance different strategies. However,
gameplay dynamics are saturated by context and trends in
a player community, walkthroughs on third-party websites,
viral videos, etc. Finally, only through gameplay can a player
experience emotions or the aesthetics of play, and thus even a
game designer must resort to gameplay testing (i.e. become a
player) to verify these aesthetic outcomes.

2) The Question of NPC behavior: Non-player characters
(NPCs) are by themselves multi-faceted elements of games,
relying on a memorable appearance, voice-acting, character
growth, etc. On the other hand, considering NPCs as intel-
ligent agents begs the question if such intelligence requires
an additional facet. We consider NPC behavior traditionally
exhibited in games (and in AI research) to belong primarily
to the gameplay facet. Specifically, NPCs playing the game in
a similar way as the player count as automated gameplay. This
is especially true for agents that play the game using the same
rules as the player (e.g. in adversarial symmetrical games such
as chess) or with minor changes (e.g. asymmetrical gameplay
where the AI has more knowledge of the game state as in
the Civilization series). For all intents and purposes, the AI
is attempting to emulate a player’s decision-making processes
and thus it generates functional aspects of the gameplay facet.

Beyond playing the game strategically as a player would,
research in believable agent behavior where NPCs attempt to
emulate how humans would react to a situation similarly tar-
gets automated gameplay. For example, Prom Week [20] uses a

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 5

complex internal model for each NPC regarding relationships,
traits and cultural knowledge. These NPCs do not attempt to
“win” the game as a player would; they attempt to be human-
like in their reactions and thus emulate a human experience
when seeking a date to the prom. While not a player per se
in this case, emulating human-like dynamics and aesthetics
in a multi-agent system is akin to prompting the aesthetic of
fellowship in multi-player games, and falls under gameplay.

That said, simple NPC behaviors such as the rule-based
system of monsters in Spelunky (Yu, 2008) or Super Mario
Bros., which patrol to the edge of a platform and then change
direction, would be a stretch to ascribe to gameplay. In such
games, NPCs (if they can even be named so) act as dynamic
obstacles which move in a simple, deterministic pattern; their
behavior rules are merely part of the rules facet, while their
placement in a level is a part of the level design facet, but their
resulting behavior does not quite match the gameplay facet.

3) The Question of Genre: The notion of game genre
has not been highlighted in the above distinction between
facets, as most genres affect all facets—although usually not
in equal degrees. It could be argued that genre conventions
can become the connecting thread between different facets.
Based on the long history of games and their categorization,
specifying a genre such as turn-based strategy comes with
many assumptions that narrow down the possibility space of
most facets (e.g. top-down visuals, rock-paper-scissors game
rules, war narrative etc.). While most game genres primarily
define interactions with the game system (i.e. rules, mechanics,
goals, winning conditions), merging genre with the rules
facet would be a risky generalization. A game genre often
describes and constrains more than one facet: the music game
genre constrains the rules (i.e. synchronize player input to the
sounds), the level design (i.e. a level structure that allows a
player to foresee the next few keys that must be pressed) and
of course the audio. As genre imposes constraints on several
facets, it can provide the necessary context and anchor for
orchestration if it is identified before any generation takes
place. Demonstrably, all case studies in Section VII were
constructed with a specific game genre in mind (e.g. arcade).

4) The Question of Facet Hierarchy: When attempting
to generate content for many different facets, it is perhaps
inevitable to ask “where do we start from?” as some facets
may hinge on the pre-existence of others. An obvious ex-
ample is gameplay, which requires game rules and a level
(at the minimum) in order to occur. On the other hand, a
computational or human designer can draw inspiration for a
game from a song or a book, and can pitch a game to the
studio based on its visual style or historical setting. When it
comes to actual game production, however, we argue that the
rules facet comes first. In a generative pipeline, the rules of
the game and its goals would need to be generated ahead of
the level, visuals or a concrete narrative. In many examples
of game generation, including those in Section VII, the game
rules and ending conditions are implied (e.g. reaching 0 hit
points loses the game) based on genre conventions.

This does not mean that a ruleset should be emphasized in
the final game, i.e. the argument is not for “mechanics-heavy”
design. Different games may foreground different factors of

player experience or different design elements in the final
product (e.g. adventure games often foreground the story
and dialog). However, the main gameplay loop (itself in the
gameplay facet) and the aesthetics of the player experience
[35] are ultimately shaped by the game’s mechanics, goals,
losing conditions, and their inter-relation.

III. INPUTS TO ORCHESTRATION

In this article we assume that AI is the main driver not
only of the orchestration process (discussed in Section IV)
but also of every generative task. However, the inspiration or
guidelines for these tasks may originate from sources outside
the confines of the algorithmic codebase. We shortly survey
possible inputs to the generative processes being orchestrated.

A. Input from a Human Creator

A human creator or player can often customize a generative
process based on their preferences. The degree and impact
of human input varies. Many games such as Stellaris allow
the player to customize a few intuitive parameters such as the
number of players (enemies) which directly affects the game’s
difficulty and dynamics. Parameterization of the generator on
a case-by-case basis by the user is also available where orches-
tration is concerned: in GAME FORGE [43] a user can express
spatial preferences for the final level (e.g. “branchiness”), but
the level generator must still obey the narrative structure of the
underlying storyline. While in Stellaris the user customizes
parameters of a scripted generator, in GAME FORGE player
preferences directly affect the objective of an evolutionary
algorithm. Similar objectives can be tailored through a graphic
user interface as a target hue selected by the user on a color
wheel [11], less directly as an intended tension curve [15],
or inferred based on player interactions with generated results
[44]. Human input can also take the form of English text: A
Rogue Dream [45] and WikiMystery [46] require a single word
or a person’s name as input, respectively, to draw inspiration
from. Extensive human authoring may also be required: Game-
O-Matic [47] requires a user-created graph with customized
edges and nodes, while mission graphs in Dwarf Quest must
similarly be hand-authored along with their node types [48].

B. Input from Human-based Computation

There is an ever-expanding volume of data available online,
and human users constantly engage with each other and with
web content. A multitude of software perform human-based
computation by outsourcing several steps of their processes to
a crowd of human users. It is not common for generators to
rely on human-based computation, although there are several
noteworthy examples beyond games. Google N-grams have
been used to find associations and similes between words [49]
and transform one character role into another [50]. In non-
game orchestration, online newspaper articles have been used
as a seed to create collages, the constituent images of which
were collected based on Flickr searches [51].

For game generation, human computation has been used
to learn patterns from stored game content available online,

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 6

such as video playthroughs [52] and human-authored game
levels [53] to inspire level generation for arcade games. On
the other hand, data games [54] transform open data into
playable content. Data Adventures [55] and Angelina [56] use
online sources which are constantly updated such as Wikipedia
or The Guardian newspaper (respectively), thus a generated
game may differ from one day to the next based on recent
changes. Finally, games such as A Rogue Dream [45] and
Game-O-Matic [47] use online repositories such as Google
images to find appropriate artwork to integrate in their games;
this bypasses the serious challenge of generating appropriate
and visually relatable visuals for many of the complex or
contemporary content semantics that these games produce.

C. Embedded Input
For automated generation, there tends to be an assumption

that the entirety of the world knowledge is encoded (or
generated) within the codebase which creates content. This de-
cision is due to practical concerns (e.g. not all human-editable
parameters are intuitive, and online queries can be mercurial or
finite) as much as it is due to the desire for fully autonomous
generation—as computational creativity often aspires to [57].
The simplest type of embedded input is a random seed: how
this seed is transformed into content depends on more complex
embedded structures such as rulesets (e.g. in cellular automata)
or lookup tables (e.g. random encounter tables). For many
generators of narrative, a full world model must be embedded
[58]. Similarly, most level generators encode all possible tiles
and their relationships a priori; if the evaluation of generated
levels requires a simulated playthrough, the gameplaying agent
is also hard-coded a priori into the system, e.g. in [59].
Orchestration is arguably easier when the entire system is
contained within the codebase, especially if the orchestrating
software has knowledge of each generator’s world model. For
instance, Ludi [30] orchestrates level and rule generation by
integrating both in the same genotype; a game player encoded
in the same software can directly return a fitness score to
the search-based rule/board generator. On the other hand,
orchestration may not rely on external inputs except on specific
generative steps: for instance, while Sonancia can generate
the intended tension progression and level without any human
input, the last step where sounds are added to the level requires
external input from crowd-sourced tension models [60].

In theory, a fully internalized orchestration module seems
ideal for fast and efficient coordination; however, the main
challenge is the onerous and sometimes infeasible task of
encoding a world model into the generator. While narrative
generators include a thorough knowledge model, embedding
it is a very tedious task which requires extensive textual input
even for minimal story domains. When more game facets are
considered, such as visuals that represent real people, then the
complexity of such an internal model is too large and external
input (e.g. online sources) is the only viable solution.

IV. ORCHESTRATION PROCESSES

As noted in Section I, we borrow the metaphor of orches-
tration to contextualize the collaboration of multiple compu-
tational designers, each focusing on the creation of content

Design

Implement

Post-Production

Testing

Requirements

Fig. 3: General view of the waterfall game design process.

primarily for one facet: examples include level generators,
ruleset generators, artificial playtesters, etc. In that context,
we identify two ends of the spectrum which have been
heavily researched both for game development and for general
production (algorithmic or not). On one end, the top-down
process features a composer which provides as much detail
as possible to musicians (individual generators), leaving little
room for creativity to each musician. On the other end, the
bottom-up process features a group of musicians “jamming”
until they find a common frame of reference and adjust
their performances towards a shared emergent rhythm and
complementing melodies (see Fig. 1).

The sections below attempt to unpack the notions of top-
down and bottom-up processes for orchestration, proposing
possible implementations for each of them, as well as framing
them in the context of other possible metaphors and related
work in broader AI coordination. Moreover, the fertile middle
ground between these two ends of the generation spectrum is
identified with some examples.

A. Top-down Process: the Composer

The simplest way to achieve a consistent design seems
to be to impose it a priori to all constituent members of
a production team. In our music metaphor, this would be
a composition written by a musical luminary, such as a
concerto written by Vivaldi. Distributed as sheet music to
each instrument player, the constituent musical pieces are
played by the respective instruments. Taken at face value,
this resembles a production line at a manufacturing plant
where machines (or humans, for that matter) are given a firm
set of instructions which they must execute with precision.
In game production, this could be likened to the waterfall
model [61] where a thorough game design document, created
before production begins, informs all creative decisions down
the line. In the waterfall model (see Fig. 3), the game is
first designed on paper, then implementation (be it graphical,
functional or other) takes place following the design document
closely, followed by post-processing and testing. The core
principle of the waterfall model is that each step can start only
after the steps before it are completed. As with a concerto,
some common understanding on how to interpret the design
document is necessary—mediated by a maestro in orchestras
and by art directors or tech leads in game development. This
common understanding is further strengthened and finalized
during post-production where all components come together
and additions or fixes are made to better adhere to the design
document. Admittedly, we oversimplify the role of maestros,
art directors or post-production in this example to present the

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 7

extreme end of the orchestration spectrum as a production
line; often the creativity and influence of such individuals is
imperative, and we will discuss this in Section IV-C.

1) Related Background Work: In generative systems, a
waterfall model is best represented as the generative pipeline,
also called a feed-forward or linear approach. A general input
is fed to one process marked as first in the pipeline. The
first process produces some kind of output, which is handed
off as input to the next process in the pipeline. The second
process elaborates on or transforms its input as necessary, and
hands off its output to the third; and so on down the line
until the final product is output. This is perhaps the most
straightforward way of combining multiple generative systems,
and has therefore been used frequently in many domains,
including in most of the multi-facet game generation systems
discussed in Section VII. It is important to highlight the role
of input in this approach: this is most often a user specification
(i.e. pre-authored by a human designer) although the level of
detail of this specification affects the creative leeway afforded
by the generators within the pipeline.

Linear generative pipelines are also common as an archi-
tectural foil held up by systems that wish to move beyond
them, perhaps because they are easy to make work but
are unsatisfying as a model of the creative process. Critics
correctly point out that humans don’t produce creative artifacts
in this purely linear manner, and instead different facets of
a creative domain may impact others in a multi-directional
manner that includes interaction between facets and multiple
revisions. For example, working in AI jazz improvisation,
Horowitz [62] proposes several different interacting areas,
such as melodic concepts, melodic lines, goals and emotions,
context (meter and harmony), solo lines, low-level features
(pitch and rhythm), etc. Each of these areas mutually impacts
the others, and furthermore may itself have multiple sub-
facets. In this system, a spreading-activation network is used
for multi-way interaction between those facets.

2) An Envisioned Framework: Many of the case studies
in Section VII use a generative pipeline of some sort. As an
example, Sonancia [63] first generates the desired progression
of tension (following film tropes), then uses it to generate a
level that matches it as closely as possible, then uses the actual
tension in the generated level to choose sounds for each room.

In order to give a broader and more inspiring framework
for top-down generation, we envision a full game generation
pipeline illustrated in Fig. 4. This system starts from a general
game description and uses a pipeline to introduce more details
until a complete game can be composed out of the outputs of
specialized, small-scale generators. This general game descrip-
tion acts as a frame [64] which can be generated or provided
by a human designer, and it must identify the core principles,
technical and semantic, in each creative facet. An example
frame can include one or more semantically rich labels for
each facet (e.g. “a 3D horror game set in claustrophobic levels
with warm visuals and foreboding audio, in a castle setting
with enemies attempting to chase away the player”). Ideally,
the frame should be described in natural human language [65],
although it suffices if the frame is only machine-interpretable
(described as fitness functions, grammars, ontologies, text

Fig. 4: An example top-down generative process based on
frames that are refined by subsequent generators (as directors).

files, or other parameters). The frame is the blueprint for the
generated game, and acts as producer in a game studio [66].

The high-level frame can be disseminated among the differ-
ent single-facet generators which produce content appropriate
to the directives and constraints of this frame. However, the
frame will need to be further refined in terms of each facet
before content can be generated. Refinement can be done by
lower-level directors, focusing exclusively on each facet: an
analogy can be made with e.g. art directors in game studios,
who coordinate artists via moodboards or concept art. The
example frame above can be refined by a generator of art
frames into art-specific guidelines such as “the game needs
stone castle textures, 3D meshes of narrow corridors, 3D
meshes of creepy statues, and animated meshes of undead
monsters”. These frames can be further refined (e.g. to define
the exact dimensions and components of the wall meshes or
the monsters), leading to a series of generated “primitive”
components which are re-combined by the directors and
provided back to the producer/frame to form the generated
game. This generative model allows for a more directed flow
of information, and a clear task allocation to the generators
of “primitive” components. These generators do not need to
be particularly “intelligent” or “creative” in that regard: con-
structive PCG methods likely suffice for the speedy creation of
content. Assurance of quality and consistency is done by direc-
tors who narrow down the generative parameters sufficiently to
ensure that any content generated will be appropriate. This top-
down generative model follows largely the waterfall model of
software development where each phase leads to a subsequent
phase more grandiose (and expensive) than the next. This holds
true in the generative “waterfall” orchestration, as generators
of high-level frames are computationally and conceptually
simpler than generators of “primitive” components.

3) Challenges: As discussed earlier, the main argument
against a generative pipeline is, perhaps counter-intuitively,

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 8

the simplicity in which it can be implemented. The pipeline’s
simplicity hides another danger: that the constituent generators
in the pipeline merely obey rules similar to a machine on the
production line. A generative pipeline itself, under that lens,
does not contain any artificial intelligence or creativity. The
creative challenge in this case is two-fold: (a) how the original
“frame” is generated and (b) how the high-level frame is
iteratively interpreted into progressively more precise descrip-
tions and actionable generative commands. On the other hand,
the top-down process handles the challenge of harmonization
fairly efficiently, by breaking it into smaller parts (sub-frames)
and by ensuring that generators only produce content under
very specific constraints that match that frame.

B. Bottom-Up Process: the Jam

As mentioned in Section I, music orchestration does not
necessarily need a composer or maestro but can instead be
done through jamming, e.g. freeform jazz musicians creating
music by feeding off each other’s riffs. A similar brainstorming
and iterative development method is followed in more freeform
game development settings, such as in game jams. Based on
the survey of [67], when developing a game the (human)
participants of the Global Game Jam start from many ideas
and iteratively reduce scope, or start from vague ideas and add
mechanics and features during implementation, or start from
a core idea and build it up based on testing and feedback. Of
these processes, the first two hinge on the iterative refinement
of one or more vague ideas, which are formalized both through
testing and through conversation among team members.

Can generators “jam” like freeform jazz musicians or
Global Game Jam participants? A possible bottom-up ap-
proach requires multiple generators, each contributing content
pertaining to one facet, producing initially random content
and then observing how their output matches other generators’
output. Initially, random content should be produced at a more
abstract representation than the intended end-results, e.g. as
map sketches [2] rather than 3D levels. Like freeform jazz
musicians, the generators would then need to adapt and refine
their generative process in order to better match the output of
the other generators, aiming to reach a consensus. To achieve
this, the generators would need a way to evaluate both their
outputs and the outputs of other generators in order to assess
how well the primitive components that each generator pro-
duces match. This can be done in several ways, e.g. based on
labels as discussed in Section IV-A2: a mesh generator creating
pieces of a castle (label) would not match a texture generator
creating sci-fi tiles or a NPC name generator for cyberpunk
settings. Several functional flaws of non-matching components
could be recognized during playthroughs by a generic AI
player, e.g. when combining narrow maze-like levels with a
control scheme of racing games. Finally, consistency can be
evaluated in a completely data-driven fashion which uses a
vast database of existing games to learn patterns (e.g. via deep
learning) and assess whether typical [68] associations between
facets are present in the output of the different generators.

It is clear, therefore, that the proposed bottom-up approach
to facet orchestration likely needs fewer generators than the

top-down approach, as generators of framing information
become unnecessary. On the other hand, the generators must
be (a) highly expressive, i.e. able to create a broad range of
content, (b) able to adapt their process to match the output
of other generators, (c) able to assess how well their output
matches that of other generators. For the latter point, evaluat-
ing asset consistency can be either included in every generator
or take the form of an external AI playtester or an external AI
data processing unit. Regardless, it would seem that achieving
a fully automated bottom-up generative approach requires
human-level aesthetic evaluation and adaptation capabilities.

1) Related Background Work: A set of independent genera-
tors collaborating in a shared design space is reminiscent of the
blackboard system [69], [70] which is found in a large amount
of classical AI work [71], [72]. These systems are based
around a central data structure called the blackboard, which
multiple independent processes can read from and write to. In
this type of architecture, processes generally do not directly
communicate; instead, they communicate implicitly through
the blackboard by recognizing content on the blackboard
that is relevant to their own operation. The intention is to
couple processes only loosely, avoiding both the n2 process-
to-process communication explosion, and the need to specify
a fixed control flow and data model at the outset. To facilitate
this, processes in blackboard systems must be able to ignore
the blackboard content that they do not recognize. In fact, there
is typically no explicit control flow at all; instead, processes
asynchronously read the blackboard and take action as they see
fit, thereby decentralizing the decision-making logic. However,
a central scheduler may exert some high-level control by
modifying when each process is scheduled, and its resources.

One early use of a blackboard approach to generate con-
tent in a creative design domain is in a series of systems
from Hofstadter’s group at Indiana University, which have
been applied to generate creative analogies [73] and type-
faces [74]. In these systems, the blackboard (which they call
the Workspace) contains the current artifact in progress, along
with a number of annotations that generative processes (which
they call Codelets) can add to items on the Workspace, in
addition to changing the items themselves. Codelets come
in several flavors: some codelets notice low-level patterns
and add an annotation proposing that these patterns may be
useful, other codelets try to enact a high-level goal (such
as a particular analogical schema), and yet other codelets
notice and/or attempt to fix specific types of problems that
the distributed operation of the other codelets has produced.

2) An Envisioned Framework: Inspired by blackboard sys-
tems, we envision a bottom-up process similar to Fig. 5
where a number of “general” generators for each creative
facet produce artifacts that are then placed on the workspace.
The generators are general in the sense that a generator can
produce a broad range and style of artifacts, such as medieval
textures (e.g. for stone castles or wooden carts) as well as
sci-fi or modern textures. However, it is likely that these
generators could be composed of more specific generators:
a general audio generator could consist of generators for
background music and generators for short sound effects. The
workspace is a combination of all types of game content,

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 9

Fig. 5: An example bottom-up generative approach based on
an external or internal system that evaluates the components’
consistency and playability as a whole, and may adapt the
individual generators’ parameters (shown as dashed arrows)
based on these evaluations.

which must be checked for coherency by some internal system
(e.g. a data processing unit) or some external system (e.g.
a general AI playtester). This coherence evaluation would,
at the very least, reject a combination of game content and
clear the workspace; it could also remove the most incoherent
content, leaving more coherent content as a seed for future
combinations. Ideally, the coherence evaluation system should
adjust parameters of the generators so that they would produce
content more appropriate for the workspace. Alternatively,
the generators themselves could inspect the workspace and
adjust their own parameters to harmonize with the patterns
that emerged already. This is similar to how jazz musicians
attempt to change their pace or notes to match the emerging
melody created by the band.

3) Challenges: The largest challenge for generators able
to brainstorm and eventually coalesce to a common goal
and final artifact is the requirement for a very sophisticated
appreciation model to assess not only their own but also
other generators’ creations. It should not be understated that
jazz musicians jamming together are accomplished musicians
individually, and that game jam participants have a common
real-world model of the popular games’ features in any facet.
Thus, in a fully bottom-up approach each generator should
have a knowledge model, e.g. learned from existing games,
which it can use to identify patterns in the generated data
of other generators and adjust its own creative process to
match those patterns more closely. The ability to appreciate
other generators’ output or the ability to adapt its own output
can quickly escalate to an AI-complete problem. Similarly,
a general AI playtester which can account for (and take
advantage of) non-functional elements, such as visuals or
narrative cues during play, is similarly beyond the scope of the
next decade of game AI research. However, several shortcuts
can alleviate this challenge: for instance, using common labels
between generators (which can create sci-fi themed visuals
and sci-fi themed rules, for instance) would allow for a fairly
simple coherency evaluation. This shortcut comes at the cost
of expressiveness, since only certain labels or game themes

can be accommodated in this case, but it is a stepping stone
towards realizing more ambitious bottom-up generation.

C. Intermediate Approaches

Section IV-A and IV-B elaborated on two edge cases where
generation follows a top-down or a bottom-up flow. To bet-
ter illustrate each process, analogies with musical composi-
tion and commercial game production processes were used.
However, many of the assumptions for how musicians or
game developers are creative were oversimplified to offer
the extreme ends of a spectrum. Orchestra musicians are
hardly production line robots, and jazz musicians come to a
jamming session with some assumptions (e.g. that they will be
playing jazz). Similarly, even the most complete game design
document does not contain the coordinates of all vertices in
a 3D model, and even in the most rigorous waterfall model
most discrepancies—often identified via internal playtests—
are fixed during the post-processing step. In game jams,
jammers share abstract ideas first via sketches, agreeing on
a basic premise before starting to create content. There is
therefore a fertile middle ground between a strictly top-down
and a purely organic bottom-up process when it comes to
automating game generation. Using similar musical and game
production analogies, we briefly highlight some promising
directions for orchestration which bridge the two extremes.

1) A Creative Maestro: The top-down process of Section
IV-A assumes that a composer is the solitary genius who
disseminates more-or-less explicit orders to the musicians or,
in our case, to generators of specific artifacts. The role of a
director in Fig. 4 is to interpret the specifications of the high-
level frame into actionable commands for simple constructive
generators beneath it. However, these directors could interpret
the provided frame much more loosely and creatively: for
instance the visual director of Fig. 4 could identify a castle as
the expected medieval castle made of stone walls or—with
a creative interpretation—as a flying fortress with sci-fi or
mechanical walls. Such creative interpretations could lead to
dissonance between e.g. the visual output of a flying fortress
and audio output for medieval throne rooms. To overcome this
and achieve better orchestration, a dissonant direction (from
the different directors) could suggest a change in the common
frame, and that change would then have to be interpreted and
propagated to all directors (and thus all generators) for every
facet. Having a director suggest a change of frame is contrary
to the top-down process where past decisions (or generative
steps) are frozen. The benefit of such a change, on the other
hand, could be a more creative process than a strict top-down
process; at the same time, since only directors (using high-
level labels) can suggest changes to the frame means that the
process is more controlled than in pure bottom-up approaches,
where the shared workspace is equally likely to contain low-
level content such as textures or dialogue lines.

2) Jamming with Fake Sheets: The ambitious nature of
bottom-up approaches has been highlighted in Section IV-B3.
To take a plausible intermediate step towards fully bottom-
up approaches, the notion of a “frame” similar to that in
Fig. 4 (and discussed above) can be introduced. In the case

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 10

Postmortem

Design

Playtest

Implement

Fig. 6: General view of the iterative game design process.

of bottom-up approaches, a frame could act more as a “fake
sheet” (or lead sheet) in music: fake sheets specify only the
essential elements of a song (melody, harmony, lyrics) and is
often the only form of written music in jazz ensembles. A
musician plays this melody while other musicians improvise
accompaniments or solos on top of this basic chord progres-
sion. In a bottom-up generative process, a fake sheet would
then be a frame which all generators agree to build on and
expand, following its essential structure without being subdued
to it. The frame can originate from a human or a computational
designer (similar to the frame generator in Fig. 4). The frame
can be disseminated to the individual generators for adjusting
their parameters and ensuring that their content more or less
fits the frame; alternatively, it can be placed on the workspace
just like any other artifact and inform the coherency evaluation
system, which must not only ensure that generated content is
coherent with each other but also with that specific frame.

3) Vertical Slices: The grandiose vision of the previous
sections has been the generation of full games as a result of
combined efforts of orchestrated generators. The assumption
has been that everything needed for this game is generated at
the same time—no matter how long that takes. On the other
hand, game development companies often follow an iterative
approach (see Fig. 6) where each small game mechanic,
level element or idea is developed in isolation (so as not
to endanger the general development schedule and pipeline)
and tested, refined and re-designed until it is ready to be
integrated into the existing game. Working on such vertical
slices, development becomes flexible and open to innovations,
since any feature can be designed, tested and refined or
discarded without hurting the game. This can be integrated as
a generative process: arguably, any level design task is a large
vertical slice as the level can be tested (with existing game
rules), refined and included in the level collection or discarded.
However, vertical slices can be useful for other facets as well
as for a combination of facets, provided that game generation
proceeds in an iterative fashion. As an example, an iteration
can introduce a new game mechanic which allows climbing
vertical surfaces; this affects the level design which now can
feature sheer walls, and possibly other facets such as sound
effect or animation for climbing. If any of these generated
components underperforms (e.g. no appropriate animation can
be devised for climbing, or levels become too easy regardless
of adjustments) then the iteration is ignored and the game
content already generated remains as it was at the start of
the iteration. Working on vertical slices allows for a more
manageable breadth of possible content, as modifications of
already generated content, which is suitable both for a top-

down process (e.g. with the high level directive “Levels must
be easier to speed run through”) or for a bottom-up process
(e.g. with a rule generator pitching a new mechanic). The
smaller scale of these vertical slices will likely speed up
generation of the slice itself but may also slow down the final
development of the game if a large portion of the vertical slices
are discarded because they produce worse results.

4) Post-production (Repair): In the general top-down game
development process of Fig. 3, the combined content after the
implementation step are not immediately sent for testing but
instead go through a post-production step. This step is largely
overlooked in the described top-down orchestration process of
Section IV-A2, which assumes that all content generated by the
primitive generators can be combined together without issue.
However, post-production can identify flaws in the integration
of different content (or codebases, in the case of both com-
mercially developed and computationally generated settings).
It can also take steps to smooth out any errors introduced
during integration or, more ambitiously, any dissonance or
incoherence among the different components being combined.
Post-production can be simulated programmatically, and is
often identified as a “repair” function on generated content.
In PCG research, repair functions have been applied based
on a constructive algorithm which, for instance, removes
inaccessible tiles in a level [75] but also to modify levels by
applying filters learned from high-quality content [76]. It is
likely that deep learning can be used to produce repair filters
similar to those in [76] but for a broader variety of content
and facets—provided a sufficient corpus of such data to train
from. Regardless of method, post-production is a necessary
step for top-down processes in commercial settings and should
be considered for top-down orchestration as well. However,
bottom-up processes that place a diverse set of content on a
workspace would likely also require a post-production step in
order to smoothly integrate such content into a playable game.
Iterative generation through vertical slices would also require
a post-production step when the iteration is deemed successful
and its changes need to be integrated with the game created
so far. In short, a high-quality post-production step which can
identify and smoothen dissonance between generated content
is a core element of orchestration, and in certain cases could
be considered the main method for orchestration itself.

V. HUMAN INTERACTION IN ORCHESTRATION PROCESSES

This article assumes that orchestration is largely automated
by an artificial intelligence; however, human intervention
during the orchestration process should also be considered.
Unlike human input to each generator discussed in Section
III, in this context intervention occurs during (rather than
before) orchestration. As an example, interactive evolution
[77] can be applied on the orchestration level to select the
most appropriate or harmonious facet combinations. Interac-
tive evolution allows users to directly select which content they
find most appropriate, in cases of single-facet content such as
tracks [78], flowers [79], or spaceships [44]. Beyond mere
selection of favorite content by visual inspection, humans can
create data on the gameplay facet by playing the generated

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 11

content; based on the gameplay facet, content of other facets
such as levels [80] can be orchestrated. Interactive evolution
has also allowed human intervention on orchestration between
multiple game facets, such as space shooter weapons’ visuals
and trajectories (game rules) in Galactic Arms Race [81].
AudioInSpace [82] requires the player to test the weapons and
select which weapons’ visuals and rules are best orchestrated
with the game’s generated soundscape; the player can select
which weapon they prefer but also which audio they prefer,
allowing for more direct control over which facet should be
adjusted to become more harmonious.

As with bottom-up and top-down approaches, there are
different degrees of human interaction which can be included
in the orchestration process. Human interaction can use direct
selection as in [78], [79], [82] to replace the coherence evalu-
ation of Fig. 5, indirectly learned designer preference models
which can automate evaluation until new data is offered by
the player [44], [83], [84], or human-provided gameplay data
to replace automated playtesting for the gameplay facet [80],
[81]. Expanding on the latter case, gameplay data has so far
been used to help generate new game rules, visuals or levels
based on a pre-authored mapping between gameplay and the
other content being generated: better levels feature more play
time spent in combat [80], better weapons are fired more often
than others [81]. On the other hand, this mapping between
different types of content is of paramount importance to
orchestration (amounting to the coherence evaluation of Fig. 5)
and could be further refined based on human associations,
e.g. by players’ self-reports that can be modeled via machine
learning into a predictive model of coherence similar to [85].

VI. END-USERS OF THE ORCHESTRATION PROCESS

Ultimately, AI-based game generation aims to create com-
plete games that are immediately playable. For most generators
(in one or more facets) the output is playable by a human or AI
player [86]. However, other generators produce intermediate
or unfinished content which must be verified or edited by a
designer before becoming playable. WorldMachine (Schmitt,
2005) produced masks and heightmaps [87] that are then
edited by level designers to add 3D meshes and game-specific
objects for Battlefield 3 (EA, 2011). Tanagra [26] generated
platformer levels which the designer could then adjust further
in the same interface before making them available for play.
Sentient Sketchbook [88] generated map sketches in response
to a designer’s actions; these map sketches were used for
concept development rather than as final playable output. Gen-
erators of Role-Playing Game content1 provide a springboard
for game masters who can adapt (or ignore) the generated
results to fit their current needs or their campaign’s backstory.

When it comes to the output of orchestration, the question of
intended end-user becomes even more pertinent. While ideally
the outcome of orchestration should be a game ready to be
consumed by a player, this requires a perfectly harmonized
and balanced set of artifacts. As noted already, the problem
of coherence evaluation can be AI-complete, while designing
generators for every type of content (of every genre, and every

1Many RPG generators can be found online at chaoticshiny.com.

Fig. 7: Facet orchestration in Angelina, where different online
sources are used to combine visuals and audio based on the
mood and keywords of a Guardian article acting as (external)
narrative. The level generator however was not connected to
the remaining facets. The in-game screenshot is from [56].

facet) could be infeasible. Until these problems are solved—or
instead of attempting to solve these problems—the output of
a creative set of generators can be provided to designers as a
springboard for authoring a game themselves. When the end-
user is a designer, the granularity of the generated output is
far more flexible. AI-based orchestration can provide a broad
direction such as a game pitch described textually or visually
(e.g. a collage or logo), or it can provide a full game (e.g.
structured as Fig. 4) but with the necessary options for a
designer to adjust or reconfigure any level of the generation
(e.g. on the broad art direction level or on the color level).

VII. CASE STUDIES OF ORCHESTRATION

Several research projects have targeted, in one way or
another, the co-creation of multiple game facets. While these
projects do not fully realize the goals set out in this article,
they are worth studying as their principles can be extended for
a better orchestration between facets. Section VIII summarizes
and compares these projects along the dimensions of Fig. 1.

A. Angelina

Angelina is a creative software developed from 2011 to
2016, which makes tracking its different versions difficult.
For the purposes of this article, we focus on a version de-
scribed in [56] which scrapes information from online sources
(e.g. stories from The Guardian news site) to create simple
platformer games. Angelina evaluates the mood of the article
based on natural language processing, chooses appropriate
image backgrounds and sound-bytes based on the text contents
(e.g. an image of a sad British Prime Minister if the article
has a negative piece on U.K. politics). While the generated
platformer level is not affected by the article’s content or
mood, the game’s visuals and soundscape are orchestrated by
the (high-level) narrative of the news piece (see Fig. 7).

B. Game-O-Matic

Game-O-Matic is an AI-based game generator which trans-
forms human-authored micro-rhetorics [90] into playable ar-
cade games. Game-O-Matic is intended for journalists to

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 12

Fig. 8: Facet orchestration in Game-O-Matic, where a human-
authored micro-rhetoric (small-scale narrative) informs which
game objects and rules exist in the gameworld; game objects
get their visuals from online sources through a search query
based on the micro-rhetoric. In-game screenshot is from [89].

quickly create newsgames, i.e. a type of game where “sim-
ulation meets political cartoons”2, by constructing relation-
ships between entities. These relationships take the form of
a concept map, a directed graph connecting entities through
verbs: e.g. “cows make burgers”, “man eats burgers” [90].
While the author can create any sort of entity, the verb in
each relationship must be chosen from a pre-determined yet
extensive list. These verbs are transformed algorithmically into
game mechanics via pre-determined rules. Thus, “man eats
burgers” may be transformed into a game where the player
controls a “burger” chased by “man” avatars, and the game is
lost if it collides with a “man” avatar, or the player controls the
single “man” avatar who wins by colliding with all on-screen
“burgers”. When combined together, the different verb-entity
triplets may create infeasible game rules [47] or games which
can not be completed: the partial game description is then
modified by one of many possible recipes which best fits the
partial game description. Sprites for entities (e.g. “burger”) are
based on Google image search results for that entity’s name.

Game-O-Matic therefore primarily interprets human-
authored concept maps (micro-rhetorics) into a complete rule-
set (i.e. with custom game mechanics, goals and instruction
sets). Additionally, the visuals of the game are fully dependent
on the entities chosen in the micro-rhetoric. While one could
argue that the visual generation in this case is superficial,
it can not be denied that different visuals (and underlying
entities) result in a wholly different message. Treanor [89,
pg. 27] demonstrates how the same mechanics can have very
different political and religious messages by merely changing
the visuals of the game objects. Finally, since Game-O-Matic
determines how entities of each type will be instantiated, and
where, the system superficially configures the level setup.

C. A Rogue Dream

A Rogue Dream [45] is a roguelite game prototype which
uses online sources to discover associations between game
objects in order to instantiate pre-authored rules templates such
as “〈enemy〉 damages 〈avatar〉”. Unlike Angelina, the human
input for the narrative is a single word: the name of the player’s
avatar. Users provide this name as a form of proto-narrative,

2The slogan of newsgaming.com by Gonzalo Frasca et al.

Fig. 9: Facet orchestration in A Rogue Dream, where a user-
provided name for the avatar becomes the seed for discovering
the names (and from them, the visuals) of enemies, goals and
healing items. A special ability name and mechanic is based
on the avatar name (and a pre-authored list of possible game
mechanics). The level generator however was not connected
to the remaining facets. In-game screenshot is from [45].

which is strengthened algorithmically with names for enemies,
edible items and game goal. These are discovered through
Google’s autocomplete results using templates such as “why
do 〈avatar〉 hate. . . ” for discovering enemies (as the next word
of Google’s autocomplete results). The game mechanics are
pre-scripted (e.g. the player will have to reach the goal and
edible items heal a pre-specified amount of damage up to a
maximum pre-specified hit point limit). The only generated
component for the game rules is the avatar’s ability, which
is also discovered through Google autocomplete result for the
query “why do 〈avatar〉. . . ”. The verbs found as results of this
query are matched to a pre-scripted list of possible abilities
such as ranged attacks; if no match is found, a random ability
is linked to the verb (i.e. there is a fallback that decouples
narrative and rules, if orchestration is impossible). Similar
to Angelina, A Rogue Dream generates a simple grid-based
level with enemies, healing items and a goal dispersed in
it, disregarding their instantiated names. Similar to Game-
O-Matic, the names of avatar and discovered associations
(including abilities) are used as search queries to find the
visuals used in the level and user interface (see Fig. 9).

D. Data Adventures
While most instances of multi-faceted generators are based

on content generated from scratch, this does not have to be the
case. The Data Adventures series [46], [55], [91] create simple
adventure games based on components already existing and
freely available as open access data. Using primary sources of
open content such as Wikpedia for data, Wikimedia Commons
for images and OpenStreetMap for levels, Data Adventures
recombine that information in novel (and often absurd) ways
to create adventures for finding an NPC specified at the start
of the game [55] or for discovering the culprit of a murder
[46], [91]. The generative system finds links between people,
places and topics in Wikipedia and crafts a series of encounters
with different “real” people (i.e. existing in Wikipedia) in
locations around the globe, the maps of which are collected
from OpenStreetMap; finally, the images of places and people
are collected from Wikimedia Commons. From an orches-
tration perspective, the Data Adventures system acts as the

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 13

Fig. 10: Facet orchestration in Data Adventures, which links
Wikipedia articles together into a generated plot, and searches
for visuals based on article titles. Level design is based on
the real location of cities on the globe, while city layouts are
based on OpenStreetMap. In-game screenshot is from [91].

“maestro” that collects semantic associations and generates
proto-narratives from them (“the culprit may be X because it
has the same profession as Y”), geolocations of different cities
to generate the level (world map), and appropriate visuals for
these people and locations. While Data Adventures operate on
a different level than traditional PCG approaches, and not all
their constituent generators are as sophisticated, the outcomes
are some of the most elaborate instances of game generation
in the form of an extensive, highly branching adventure game.

E. Game Forge

An earlier instance where generated content of one facet
is used as input for generating another facet is GAME FORGE
[43]. This system begins from a generated narrative, where the
story is represented as a sequence of hero and NPC actions
at specific plot points, and generates a level layout so that the
positions specified in the plot are visited in order. As an exam-
ple, if a paladin must kill Baba Yaga to earn the king’s trust in
order to receive information about a secret treasure cave, then
the generated level places the lair of Baba Yaga close to the
king’s palace, but the treasure cave is accessed from the palace
only by crossing the lair. Moreover, the generator adds variety
with locales unrelated to the plot to increase unpredictability.
The level’s target features (e.g. world size, number and length
of side-paths) are specified by the player and form an objective
for evolving the level towards the player-specified features

Fig. 11: Facet orchestration in GAME FORGE where a gen-
erated narrative informs level generation. Level properties
(e.g. side-paths) which do not break narrative constraints can
be customized by the player. In-game screenshot is from [43].

Fig. 12: Facet orchestration in AudioInSpace, where players
select which weapon or music mappings to evolve. Weapon
particles can have different colors. Audio affects the weapon’s
behavior; a fired particle, its speed and color can affect the
audio pitch or volume. In-game screenshot is from [82].

and the narrative constraints. GAME FORGE uses the designer-
provided or computer-generated narrative (quest-line) to guide
level generation, but also accounts for player preferences.

F. AudioInSpace

AudioInSpace [82] is a space shooter similar to R-type (Irem
1987), where the game’s soundtrack affects the behavior of
the player’s weapons and vice versa. The weapon’s bullets
are represented as particles, the position and color of which
are controlled by a compositional pattern producing network
(CPPN) [92] that uses the game audio’s current pitch informa-
tion and the position of the bullet (relative to where it was fired
from) as its input. This allows the audio to indirectly control
the trajectory, speed and color of the players’ bullets; the
player can control the behavior of their weapons via interactive
evolution, choosing their favorite weapon among 12 options.

On the other end, the player’s bullets (part of the rules facet)
and the player’s firing actions (part of the gameplay facet)
affect the audio being played. New notes occur when the bullet
hits an enemy or otherwise at the end of the current note.
The audio, represented as the note’s pitch and its duration, is
controlled by a second CPPN which uses as input the position
from where the last bullet was fired, the time since it was fired,
whether it hit an enemy and its color. Thus, the player’s firing
behavior (i.e. how often they fire, and how accurately) and the
weapons’ visuals can affect the notes played. This creates an
interesting loop where one CPPN uses the audio to influence
the weapons, while another CPPN makes the weapons’ and
player’s behavior affect the music played. Both CPPNs can be
evolved by the player, which makes interfacing with the system
difficult as it is unclear which facet is currently influencing the
other. To our knowledge, this is the first attempt at creating a
closed loop where rules, gameplay, visuals (as the particles’
color) and audio are orchestrated with the player acting as a
“maestro” controlling how each facet affects the others.

G. Sonancia

Sonancia [63] is a generative system which evolves levels
for horror games based on a desired progression of tension,
and then uses the levels themselves to produce a soundscape
for the experience. The model of tension defines how tension

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 14

Fig. 13: Facet orchestration in Sonancia, which generates
levels based on a generated or authored tension progression;
the level’s progression is then used to sonify each room. In-
game screenshot is from [93].

should increase or decrease as the players get closer to the
end of the level; this tension model is generated first—or
alternatively provided by a game designer [15]—and acts as
the blueprint which the level generator tries to adhere to.
Level generation is performed via an evolutionary algorithm
which tries to match the provided model of tension to the
generated level’s progression of tension, which is affected by
the presence or absence of monsters in the rooms of the level.

Once the level is generated, its own tension model is used
to allocate pre-authored background sounds to it, in a fashion
that corresponds to the tension progression. Each sound has a
tension value, which can be defined by an expert designer [15]
or derived from crowd-sourcing [60]. Each room is assigned
a background sound, which loops while a player is inside it.
By using the generated room’s tension value (which depends
on whether the room has a monster and whether there are
monsters before this room), the evolutionary level design facet
affects the constructive audio facet. Both facets are also guided
more or less directly by the framing information of tension
which can include narrative terms such as “rising tension” or
“cliffhanger” [63], although such framing information could
be considered a narrative structure only at a very high-level.

H. Mechanic Miner

Mechanic Miner [95] generates game rules by adapting the
source code of a platformer game (e.g. generating a player
action that sets gravity to a negative value), and then generates

Fig. 14: Facet orchestration in Mechanic Miner, where existing
game code is adjusted to allow new gameplay, and then levels
are evolved to take advantage of the new mechanics, assessed
on random agents’ gameplay. In-game screenshot is from [94].

Fig. 15: Facet orchestration in Ludi, where the rules for
black, white and neutral pieces are evolved alongside a board
layout (i.e. a game level). Evaluation of the board and game
piece rules is based on simulated playthroughs of two artifi-
cial agents using the same evolved policy based controllers.
Screenshot of generated game Yavalath is from [30].

levels which can be completed (i.e. the exit can be reached)
with these new rules. Playability of generated levels is ensured
by an agent performing random actions. A more intelligent
agent that learns to use the mechanics could lead to a stronger
orchestration of AI-based gameplay taking advantage of AI-
based rule generation to adapt AI-based level design.

I. Ludi

While this paper has focused on AI-based generation of
digital games, work on orchestration of board game facets
shows great promise in the Ludi project [30], [31]. Ludi
creates two-player adversarial games, abstract in nature and
similar to checkers or tic-tac-toe. The game’s winning and
losing conditions, rules for piece movement, and board layout
are described in a custom general description language with
ludemes as “units of game information” [30] (e.g. a board
ludeme or start ludeme). The game description combines game
rules and the design of the level (board), although the possible
board layouts are fairly limited compared to levels in digital
games. The game description is then tested through simulated
gameplay by two adversarial agents that use a policy evolved
specifically for this game from a set of pre-authored policy
advisors. The produced gameplay logs from a set of such
playthroughs are parsed to assess objective properties (e.g.
completion rate, game duration) but also aesthetic properties
(e.g. drama, uncertainty). Ludi’s generated gameplay simulates
players’ learning (initial moves are random, for instance).
Gameplay logs are processed extensively to find 57 gameplay
features, which are then combined into an aggregated fitness
score to bias the genetic selection of game descriptions.
Orchestration in Ludi largely follows a bottom-up approach,
adapting game rules and board layouts based on feedback
from the artificial players which in turn adapt to the specific
generated game and take advantage of its board layout.

J. Other Examples

The limited survey above describes a few exemplars of AI-
based game generation that incorporate multiple game facets.
The survey is far from exhaustive, but it aims to highlight
a broad range of approaches, different facets, and different

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 15

inputs that seed generation. However, several other projects
on AI-based game generation have attempted to orchestrate
content and are worth noting.

Arguably, any generate-and-test PCG method or simulation-
based evaluation in search-based PCG [24] generates the
gameplay facet in one way or another. Gameplay is simulated
in level generators via pathfinding between the level’s start
and finish, e.g. in [96] or via rules on when players should
use a mechanic, e.g. in [97], or via solvers for optimal
puzzle solution, e.g. in [26], [98]. Such simulation-based
evaluations usually trivialize the player’s expected experience
or aesthetics. On the other hand, [99] uses the same trivial A*
pathfinding playtraces but uses the computer agent’s viewport
to assess whether certain markers are visible or not visible.
This artificial playtrace evaluates generated levels based on the
visual stimuli rather than purely functional aspects of player
experience (i.e. completing the level). On the other hand, rule-
based systems in [97] simulate player precision by introducing
some randomness to the timing of an artificial player’s use of
a mechanic. This better captures player experience and can
be used to assess how accessible or difficult a game is to
novice players. Focusing instead on human players’ different
priorities when playing a game, levels for MiniDungeons [59]
were evolved for different procedural personas, i.e. artificial
agents with archetypical player goals such as treasure col-
lection, challenge (monster killing), or survival [42]. Finally,
racing track generation in [100] was informed by gameplay
traces of computational agents that simulated specific players’
skills captured via machine learning.

Beyond simulation-based fitness functions for level genera-
tion, gameplay and rulesets are orchestrated in a similar way.
For instance, constraint programming can produce “optimal”
gameplay traces for a broad set of generated collision-based
arcade games in [32]. Game-O-Matic in Section VII-B per-
forms a similar playability check; however such gameplay
generation is deemed too trivial to include as a generated
facet3. In contrast, Ludi creates gameplay logs by agents that
use customized policies to that particular game and simulate
learning (or initial lack of understanding). Similarly, [33]
evaluates generated collision and scoring rules for simple
arcade games based on controllers evolved explicitly for this
game. Unlike Ludi, the evaluation is based on the average
fitness of these controllers throughout evolution, simulating
how difficult it would be for a player to learn (optimize) their
gameplay towards maximizing the score.

Nelson and Mateas [101], [102] proposed a four-facet model
that partly overlaps with that of Fig. 2, and implemented
a generator of WarioWare (Nintendo, 2003) style games or-
chestrating a subset of those facets. Those four facets were:
abstract mechanics (corresponding to our rules facet), concrete
game representation (a mixture of our visual and audio facets),
thematic mapping (our narrative facet, plus the aspects of visu-
als that establish setting and meaning), and control mappings
(subsumed in our rules facet). Their generator takes a high-
level micro-narrative provided by the user (such as a game

3Similarly, Sonancia uses A* pathfinding to check that the objective in a
level can be reached, but that is not considered generated gameplay.

about chasing), and finds a combination of game mechanics
and sprites from a pre-authored set to produce the narrative. It
thus follows a top-down process that starts from the narrative
facet, and then jointly searches the rules and visuals facets for
a suitable content pair.

An unusual example is the Extensible Graphical Game Gen-
erator (EGGG) [103], an automated programming system that
generates playable user interfaces for games that are specified
in a description language, where the interfaces respect features
of the ruleset such as keeping hidden information hidden.
In addition, for two-player games it generates an AI player
specialized to that game. This can be seen as a generative
pipeline from rules to visuals and to gameplay.

Another system that couples the level design and audio
facets is Audioverdrive [104], a side-scrolling space shooter
for iOS that sets up a feedback loop between level design
elements and a procedural audio system. For example, the
height of the bottom terrain (level design facet) controls the
pitch of the bass synth (audio facet), and in turn, treble
sound events (audio facet) trigger the placement and timing of
enemies (level design facet). Unlike the—similarly themed—
AudioInSpace, the mapping between the two facets is con-
trolled by the game’s designer/composer, not by the player.

Some work in interactive narrative can also be viewed as
performing facet orchestration. Charbitat [105], for example,
has a pipeline that generates game worlds and then generates
quests to fit them. Likewise, the General Mediation Engine
[106] creates levels (as sequences of rooms) based on a
narrative created via planning (which adapts to player actions
while the game is played), and can also take some decisions
regarding game rules (such as the presence of an inventory).

VIII. COMPARATIVE ANALYSIS OF THE CASE STUDIES

Table I summarizes how the case studies4 of Section VII
tackle the issue of facet orchestration in different ways. Along
the dimensions considered, the order of generation is important
as it is indicative of a more top-down approach (in the case
of sequential generation using previous steps as scaffolds)
or a bottom-up approach (in the case of content generated
concurrently). Note, however, that order of generation does not
necessarily mean that all content concurrently generated are
actually orchestrated or checked for coherence as suggested
in Section IV-B. The only truly bottom-up approach is Ludi,
where the boards and rules are generated simultaneously and
independently from each other5, with gameplay traces created
based on policies customized for that specific board and rules.
In contrast, Sonancia uses a clear sequential process as it first
generates the frame of tension progression; then the frame
is unchanged while a level is generated to match it; then
the level is unchanged while a generator finds appropriate
sounds for each room. As noted in Section VII-J, any generator
with simulation-based evaluation, e.g. [59], has to generate
the gameplay concurrently with another facet (usually level or

4aRD: A Rogue Dream; GoM: Game-o-Matic; Son: Sonancia; GF: Game Forge;
Ang: Angelina; MM: Mechanic Miner; DA: Data Adventures; AiS: AudioInSpace.

5The fact that both facets are part of the same genotype is not relevant as
genetic operators applied on rules do not affect board layouts and vice versa.

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 16

TABLE I: Properties of the case studies of Section VII.

Case Order Facets Input
Ang Concurrent 4 Human computation
GoM Concurrent 4 Human creator, human computation
aRD Sequential 4 Human creator, human computation
DA Sequential 3 Human creator, human computation
GF Sequential 2 Embedded only
AiS Concurrent 3 Human creator
Son Sequential 3 Human creator, human computation
MM Sequential 3 Embedded only
Ludi Concurrent 3 Embedded only

rules); a sequential approach would finalize the level and the
rules and then create controllers for that combination (which
will remain unchanged until the end of generation).

In terms of facets being combined in the cases studied, most
systems combine in a non-trivial way at least three facets. As
noted, any simulation-based evaluation generates the gameplay
facet so, in that sense, two facets are relatively easy to or-
chestrate. GAME FORGE is noteworthy as it does not generate
gameplay but instead focuses on the mapping between story
and spatial arrangement of story elements. Among the most
ambitious projects in terms of facets combined are A Rogue
Dream, Angelina and Game-O-Matic, although the role of
facets such as narrative are subdued (a story’s mood or a proto-
narrative). Moreover, these three systems include fairly simple
level generators, which do not consider any of the other facets
and can thus operate concurrently without actual orchestration.
On the other hand, Ludi only generates content for three facets
but it is the only instance of complete game generation, as the
simple and abstract board games generated by Ludi do not
require or benefit from visual, audio or narrative generation.
In terms of the types of facets often generated, among the
nine case studies the most popular is level design (8 cases)
followed by narrative (6 cases), although it should be noted
again that the latter is used loosely, as it is also interpreted as
story’s mood (Angelina), entity relationships (Game-O-Matic)
or progression of tension (Sonancia).

Finally, many of the surveyed systems include human or
crowdsourced input as well as human intervention. Table I lists
case studies which make use of human input, online sources
or are only working on an internal knowledge model. Among
projects that rely on user input, the differences are notable: A
Rogue Dream requires only one word as a seed, while Game-
o-matic requires the user to create a graph and name its nodes
and edges. GAME FORGE and Sonancia do not require users to
customize generative parameters but it is likely that computer-
provided parameterization may lead to unwanted results. Au-
dioInSpace is the only case studied which requires human
intervention to affect the orchestration process while the game
is played. On the other hand, all projects which use online
sources (except Sonancia) do so to retrieve images on specific
keyword search queries. In addition to this, A Rogue Dream
uses Google search autocomplete for mechanics and game
objects, while Data Adventures bases most of its generation on
open data repositories (OpenStreetMap, Wikipedia). In terms
of systems which only orchestrate content internally generated,
of special note is Mechanic Miner, as it discovers new rules
by manipulating source code and thus the world model it uses

C
on

cu
rr

en
t

 S

eq
ue

nt
ia

l

Automated Human-influenced

Ang

GoM

aRD DA

GF

AiS

MM

Ludi

Son

Fig. 16: The spectrum of the case studies on orchestration.

is far more granular than in other systems.
Figure 16 shows where the case studies are found in terms

of sequential (alluding to top-down) or concurrent (alluding
to bottom-up) processes, as well as how much human cus-
tomization goes into each. The latter conflates human input
before generation (e.g. Game-O-Matic) and during generation
(for AudioInSpace), and is assessed on the effort needed from
a designer to initiate or guide the orchestration process. Figure
16 clearly shows that there is much ground left unexplored on
different dimensions and for most facet combinations.

IX. OPEN PROBLEMS

Section I already highlighted that orchestration is an in-
teresting but hard problem. The analysis of how existing
work in Section VII handles orchestration, and the dimensions
of full orchestration discussed in Sections III, IV, VI are
important stepping stones. However, as in any hard problem,
many and difficult challenges still need to be surpassed before
orchestration can hope to achieve complete game generation.

A. Combinatorial Explosion

We have emphasized that in order to orchestrate several
facets into a complete game, the individual generators must
be highly controllable. Otherwise, we run into the problem
of having lots of superfluous single generators with many
interdependencies which leads to a combinatorial explosion.
Lightweight scripted approaches can work for a top-down
process where a number of generators that do one thing well
(e.g. castle wall texture generation) could be chosen by the
art director among an expansive set of such generators, as in
Fig. 4. However, crafting all those generators would be a grand
undertaking. Modular and expressive generators, which e.g.
can customize their output based on top-down or co-creator
directives, are much more desirable.

B. Learning the Mapping Between Facets

While Section IV focused on the architecture and generation
sequence, at the core of orchestration is the challenge of

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 17

assessing to which extent different content match. This task
can be somehow simplified in top-down approaches, where a
human-authored hierarchy of content per game type is feasible.
In the example of Fig. 4, for example, the visuals director
refines the labels in the frame, based on a human-provided
grammar: e.g. warm visuals can be mapped to red or orange or
purple, castles can be mapped to a series of walls, floors, doors,
columns, etc. The task of mapping every possible game in this
way in a database is certainly tedious, but genre conventions
could be exploited to streamline the process. Since the top-
down generative commands are one-way, it is not vital to
verify that the final content match.

A more automated approach to this task could be via
existing ontologies beyond games. Capturing the use of as-
sociations between entities as, for example, between action
and agent/patient (e.g. VerbNet) or between a verb and its
possible usage contexts (e.g. FrameNet) can be instrumental
in deriving such mappings between facets. Similarly, semantic
knowledge bridging game facets may be captured from large
knowledge ontologies such as Wikipedia, from which e.g. the
structure or color palette of castles can be mined, or the fact
that castles are tied to medieval times and narratives. Incipient
work has been done on integrating existing lexical databases
in a computational narrative context [5]; the resulting GluNet,
however, could also be deployed to bridge knowledge between
game facets as e.g. narrative, level and visuals.

On the other end of the spectrum, purely bottom-up ap-
proaches hinge on a coherence evaluation mechanism; this was
already identified in Section IV-B as the main challenge of
these approaches. In such cases, recent advances in machine
learning could offer a solution. Deep learning has already
shown its potential in purely visual tasks, but is also making
good progress on finding associations between content from
dissimilar domains such as text and images [107] or images
and sound [108]. Given sufficient data, we can assume that
a deep learning approach can assess whether game content
match. For instance, deep learning was used to predict how
levels and weapon parameters, combined, affect gameplay
balance [109]; in [110], a similar mapping was used to adapt
hand-authored or generated levels to be more balanced for
specific matchups between character classes. It has been al-
ready shown that machine learning can capture level structures
from gameplay videos [52] which can drive the generation
of new levels. Mapping the actual visual output (in terms
of color palette or structures) on top of the discovered level
structure could provide a simple coherence evaluation for
a specific game. Beyond that, many games could be used
from a variety of “Let’s play” videos on YouTube or e-sports
streaming on Twitch. This would allow a more general model
to be trained to assess consistency across games. Although far
from straightforward, there is sufficient data available today
and sufficiently sophisticated algorithms for machine learning
to make the claim that machine learning-based orchestration
is possible [111]. Even with limited data, decision trees were
able to find mappings between color and Pokémon types in
[112], and statistical models could match a pawn’s shape with
its in-game importance [113]. However, some facets will be
easier for coherence evaluation in this way than others. For

example, visuals, sounds and even levels are straightforward
inputs to a deep learning network, whereas narrative and game
rules are far less so. Moreover, game rules may need to be
translated into machine-readable input by a human designer
as there are no explicit descriptions for them in most cases.

C. Orchestration with Human Designers

Section V highlighted that a human can directly interact
with the orchestration process (e.g. via interactive evolution),
while Section VI highlighted that the final output could be a
canvas for designers to work on. It is interesting however to
further hypothesize how content generators could work along a
human development team to create games from start to finish.
Questions of coherence evaluation can be trivially answered
by having a human expert verifying which elements match
and possibly manually removing others from a blackboard
[69]. Rather than treating designers as input (for parameter
tweaks) or intervention for verification, it is more interesting to
consider designers in other roles in the proposed frameworks.
Can designers work alongside generators, not as a composer
that dictates the frame of the generated game as in Fig. 4,
but instead jam with generators in a bottom-up approach?
Generated content has already been used as a seed for hu-
man creativity during a creative process [26], [88], [114],
and algorithmic expressiveness can be used to broaden the
creative potential of casual creators [115]. However, game
design where the computer is providing creative suggestions
in domains dissimilar to the domain the human designer
is working on (e.g. suggesting visual art while the human
designer is editing rulesets) is largely unexplored. The closest
attempt to such a human-inclusive orchestration is likely the
game sprite recommender of [116], where similarity to game
rules edited by a human user is used to find recommendations
for sprites (including their rules and visuals). However, more
computationally creative approaches, e.g. where the computer
provides the frame or where more game facets are combined,
could lead to breakthroughs in AI-assisted orchestration.

D. Evaluating Orchestration

One of the core challenges of any computationally creative
approach is assessing its performance and its creativity. The
task becomes more difficult when generation is on aesthetic
domains such as game art and music, and it is likely a reason
for a stronger research focus on the more quantifiable facets
of level generation and ruleset generation. Unfortunately, if
evaluating one such domain on its own is already difficult,
evaluating the orchestration of several domains is a far greater
challenge. Such evaluation may be subjective and likely qual-
itative, while the results that are shown in a publication may
be curated. The conclusions drawn from such work may be
subject to human biases by each author, reviewer and/or reader.
Admittedly, identifying which facets were mapped in each of
the case studies of Section VII—as well as deciding which
facets were considered too trivial a contribution, and even
the relative size of each facet in the Figures—was based on
personal intuition and, ultimately, opinion.

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 18

There is no easy solution to this problem, and the best
way to move forward for orchestration research is to look
at domains which have struggled with such issues already. As
noted above, the research community around computational
creativity has faced similar issues for several years, and many
frameworks have been proposed for assessing creativity [65],
[68], [117]. Even today the topic of trivial versus creative gen-
eration is pertinent [57], and is reminiscent of our discussion
on trivial generation of gameplay in Section VII-J.

Rather than question the creativity of their systems, inter-
active narrative research has struggled with how the authored
narrative components impact the user’s experience. In interac-
tive narrative “the dynamism of the content makes authoring
for these goals a challenge” [118]. Similarly, in games, it is
unknown—and largely untraceable—how players perceive (in
their own gameplay experience) the world and the interaction
between game mechanics. As with stories, the “readability” of
the game environment, the points of visual or aural interest,
and the use of mechanics to overcome challenges can all be
presumed by a human or computational designer, but remain
difficult to benchmark based on human play.

Finally, evaluation is a contentious topic in mixed-initiative
co-creative systems [119], where the system provides sug-
gestions to human users. Whether suggestions are selected,
which patterns the selected suggestions have (over suggestions
that are not selected, for instance), and at which point in the
creative process they were selected, can be monitored and
reported in a quantitative manner [88], [119], [120]. However,
assessing whether such suggestions are of value to users as
creative stimuli is difficult, as users may not explicitly select
a suggestion received, but instead be simply inspired by a
suggestion to change their design patterns. Similarly, users
may not necessarily correctly perceive at which point in the
creative process they were influenced, although this could be
assessed by an audience of human experts instead [119]. The
challenge is similar for AI-based orchestration, as a system can
randomly generate content (e.g. in a bottom-up approach) and
only an audience (of e.g. human experts) could assess whether
at any point in the process there was a creative breakthrough
when pieces (i.e. content of different facets) fall into place and
become more than a sum of parts.

X. CONCLUSION

This article analyzed the current state of the art in game
orchestration of different generative systems for multiple game
facets such as audio, visuals, levels, rules, narrative and
gameplay. The topic was discussed along the dimensions of
how, from where and for whom orchestration takes place, and
for what types of content. We provided several suggestions
regarding the relationships between different game facets, and
envisioned several high-level orchestration processes along
a spectrum between purely hierarchical top-down genera-
tion and organic bottom-up generation. Nine case studies
were presented and compared along the above dimensions
of orchestration. While this article does not answer many of
the questions it poses, it aims to create a roadmap so that
orchestration of game generation can be more systematically
and more ambitiously explored in the coming years.

ACKNOWLEDGMENTS

This article extends the work performed by the same authors
during the 2015 Dagstuhl seminar 15051 on “Artificial and
Computational Intelligence in Games: Integration”. A prelim-
inary report titled “Creativity Facet Orchestration: the Whys
and the Hows” was included in [121].

REFERENCES

[1] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Gener-
ation in Games: A Textbook and an Overview of Current Research.
Springer, 2016.

[2] A. Liapis, G. N. Yannakakis, and J. Togelius, “Towards a generic
method of evaluating game levels,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment,
2013.

[3] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games.
Springer Nature, 2018.

[4] A. Liapis, G. N. Yannakakis, and J. Togelius, “Computational game
creativity,” in Proceedings of the International Conference on Compu-
tational Creativity, 2014.

[5] B. Kybartas and R. Bidarra, “A semantic foundation for mixed-initiative
computational storytelling,” in Proceedings of the 8th International
Conference on Interactive Digital Storytelling. Springer, 2015.

[6] A. Järvinen, “Gran stylissimo: The audiovisual elements and styles in
computer and video games,” in Proceedings of the CGDC Conference,
2002.

[7] A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D. Ebert,
J. Lewis, K. Perlin, and M. Zwicker, “State of the art in procedural
noise functions,” in Eurographics 2010 State of the Art Reports, 2010.

[8] K. Perlin, “An image synthesizer,” in Proceedings of the 12th Annual
Conference on Computer Graphics and Interactive Techniques, vol. 19,
no. 3, 1985.

[9] G. J. de Carpentier and R. Bidarra, “Interactive GPU-based procedural
heightfield brushes,” in Proceedings of the International Conference on
the Foundations of Digital Games, 2009.

[10] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A survey on
procedural modeling for virtual worlds,” Computer Graphics Forum,
vol. 33, no. 6, pp. 31–50, 2014.

[11] A. Howlett, S. Colton, and C. Browne, “Evolving pixel shaders for the
prototype video game Subversion,” in Proceedings of the AISB 2010
Symposium on AI and Games, 2010.

[12] T. Tutenel, R. van der Linden, M. Kraus, B. Bollen, and R. Bidarra,
“Procedural filters for customization of virtual worlds,” in Proceedings
of the FDG Workshop on Procedural Content Generation. ACM,
2011.

[13] A. Liapis, “Exploring the visual styles of arcade game assets,” in
Evolutionary and Biologically Inspired Music, Sound, Art and Design.
Springer, 2016, vol. 9596, LNCS.

[14] K. Collins, Playing With Sound: A Theory of Interacting With Sound
and Music in Video Games. MIT Press, 2013.

[15] P. Lopes, A. Liapis, and G. N. Yannakakis, “Targeting horror via level
and soundscape generation,” in Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, 2015.

[16] M. Scirea, B. C. Bae, Y.-G. Cheong, and M. Nelson, “Evaluating musi-
cal foreshadowing of videogame narrative experiences,” in Proceedings
of Audio Mostly, 2014.

[17] K. Collins, “An introduction to procedural music in video games,”
Contemporary Music Review, vol. 28, no. 1, pp. 5–15, 2009.

[18] Y.-G. Cheong, M. O. Riedl, B.-C. Bae, and M. J. Nelson, “Planning
with applications to quests and story,” in Procedural Content Gener-
ation in Games: A Textbook and an Overview of Current Research.
Springer, 2016.

[19] M. Mateas and A. Stern, “Procedural authorship: A case-study of the
interactive drama Façade,” in Digital Arts and Culture, 2005.

[20] J. McCoy, M. Treanor, B. Samuel, A. A. Reed, M. Mateas, and
N. Wardrip-Fruin, “Prom Week: Designing past the game/story
dilemma,” in Proceedings of the International Conference on the
Foundations of Digital Games, 2013.

[21] B. Kybartas and R. Bidarra, “A survey on story generation techniques
for authoring computational narratives,” IEEE Transactions on Com-
putational Intelligence and AI in Games, vol. 9, no. 3, pp. 239–253,
2017.

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 19

[22] N. Shaker, A. Liapis, J. Togelius, R. Lopes, and R. Bidarra, “Con-
structive generation methods for dungeons and levels,” in Procedural
Content Generation in Games: A Textbook and an Overview of Current
Research. Springer, 2016, pp. 31–55.

[23] J. Dormans and S. C. J. Bakkes, “Generating missions and spaces
for adaptable play experiences,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 3, no. 3, pp. 216–228, 2011.

[24] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, 2011.

[25] R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “A declar-
ative approach to procedural modeling of virtual worlds,” Computers
& Graphics, vol. 35, no. 2, pp. 352–363, 2011.

[26] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: Reactive planning
and constraint solving for mixed-initiative level design,” IEEE Trans-
actions on Computational Intelligence and AI in Games, vol. 3, no. 3,
pp. 201–215, 2011.

[27] M. Sicart, “Defining game mechanics,” Game Studies, vol. 8, 2008.
[28] A. Järvinen, “Games without frontiers: Theories and methods for game

studies and design,” Ph.D. dissertation, University of Tampere, 2008.
[29] J. Togelius, M. J. Nelson, and A. Liapis, “Characteristics of generatable

games,” in Proceedings of the FDG Workshop on Procedural Content
Generation, 2014.

[30] C. Browne and F. Maire, “Evolutionary game design,” IEEE Transac-
tions on Computational Intelligence and AI in Games, vol. 2, no. 1,
pp. 1–16, 2010.

[31] C. Browne, Evolutionary Game Design. Springer, 2011.
[32] A. M. Smith and M. Mateas, “Variations Forever: Flexibly generating

rulesets from a sculptable design space of mini-games,” in Proceedings
of the IEEE Symposium on Computational Intelligence and Games,
2010.

[33] J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2008.

[34] M. Sicart, “Digital games as ethical technologies,” in The Philosophy
of Computer Games. Springer, 2012, pp. 101–124.

[35] R. Hunicke, M. Leblanc, and R. Zubek, “MDA: A formal approach to
game design and game research,” in Proceedings of the AAAI Workshop
on the Challenges in Games AI, 2004.

[36] M. Carter, M. Gibbs, and M. Harrop, “Metagames, paragames and
orthogames: A new vocabulary,” in Proceedings of the International
Conference on the Foundations of Digital Games, 2012.

[37] P. Ekman, “Emotional and conversational nonverbal signals,” in Pro-
ceedings of the Sixth International Colloquium on Cognitive Science.
Springer, 2004.

[38] J. Laird and M. V. Lent, “Human-level AI’s killer application: Interac-
tive computer games,” AI Magazine, vol. 22, 2001.

[39] D. Perez, J. Togelius, S. Samothrakis, P. Rohlfshagen, and S. M.
Lucas, “Automated map generation for the physical traveling salesman
problem,” IEEE Transactions on Evolutionary Computation, vol. 18,
no. 5, pp. 708–720, 2014.

[40] R. Bartle, “Hearts, clubs, diamonds, spades: Players who suit MUDs,”
Journal of MUD Research, vol. 1, no. 1, 1996.

[41] D. W. Niels van Hoorn, Julian Togelius and J. Schmidhuber, “Robust
player imitation using multiobjective evolution,” in Proceedings of the
IEEE Congress on Evolutionary Computation, 2009.

[42] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Evolving
personas for player decision modeling,” in Proceedings of the IEEE
Conference on Computational Intelligence and Games, 2014.

[43] K. Hartsook, A. Zook, S. Das, and M. O. Riedl, “Toward supporting
stories with procedurally generated game worlds,” in Proceedings of
the IEEE Conference on Computational Intelligence in Games, 2011.

[44] A. Liapis, G. N. Yannakakis, and J. Togelius, “Adapting models of
visual aesthetics for personalized content creation,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 4, no. 3, pp.
213–228, 2012.

[45] M. Cook and S. Colton, “A Rogue Dream: Automatically generating
meaningful content for games,” in Proceedings of the AIIDE Workshop
on Experimental AI in Games, 2014.

[46] G. A. B. Barros, M. C. Green, A. Liapis, and J. Togelius, “Who killed
Albert Einstein? from open data to murder mystery games,” IEEE
Transactions on Games, 2018, accepted.

[47] M. Treanor, B. Blackford, M. Mateas, and I. Bogost, “Game-O-Matic:
Generating videogames that represent ideas,” in Proceedings of the
FDG Workshop on Procedural Content Generation, 2012.

[48] D. Karavolos, A. Bouwer, and R. Bidarra, “Mixed-initiative design of
game levels: Integrating mission and space into level generation,” in
Proceedings of the International Conference on the Foundations of
Digital Games, 2015.

[49] T. Veale, “From conceptual “mash-ups” to “bad-ass” blends: A robust
computational model of conceptual blending,” in Proceedings of the
International Conference on Computational Creativity, 2012.

[50] ——, “Coming good and breaking bad: Generating transformative
character arcs for use in compelling stories,” in Proceedings of the
International Conference on Computational Creativity, 2014.

[51] M. Cook and S. Colton, “Automated collage generation - with more
intent,” in Proceedings of the International Conference on Computa-
tional Creativity, 2011.

[52] M. Guzdial and M. Riedl, “Toward game level generation from
gameplay videos,” in Proceedings of the International Conference on
the Foundations of Digital Games, 2016.

[53] A. Summerville and M. Mateas, “Sampling Hyrule: multi-technique
probabilistic level generation for action role playing games,” in Pro-
ceedings of the AIIDE Workshop on Experimental AI in Games, 2015.

[54] M. G. Friberger, J. Togelius, A. B. Cardona, M. Ermacora, A. Mousten,
M. Jensen, V.-A. Tanase, and U. Brundsted, “Data games,” in Proceed-
ings of the FDG Workshop on Procedural Content Generation, 2013.

[55] G. A. B. Barros, A. Liapis, and J. Togelius, “Playing with data:
Procedural generation of adventures from open data,” in Proceedings
of the International Joint Conference of DiGRA and FDG, 2016.

[56] M. Cook, S. Colton, and A. Pease, “Aesthetic considerations for
automated platformer design,” in Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, 2012.

[57] D. Ventura, “Mere generation: Essential barometer or dated concept?”
in Proceedings of the International Conference on Computational
Creativity, 2016.

[58] M. Riedl and R. M. Young, “Narrative planning: Balancing plot and
character,” Journal of Artificial Intelligence Research, vol. 39, pp. 217–
268, 2014.

[59] A. Liapis, C. Holmgård, G. N. Yannakakis, and J. Togelius, “Proce-
dural personas as critics for dungeon generation,” in Applications of
Evolutionary Computation. Springer, 2015, vol. 9028, LNCS.

[60] P. Lopes, A. Liapis, and G. N. Yannakakis, “Modelling affect for horror
soundscapes,” IEEE Transactions on Affective Computing, 2017.

[61] W. Royce, “Managing the development of large software systems,” in
Proceedings of IEEE WESCON, 1970.

[62] D. Horowitz, “Representing musical knowledge in a jazz improvisa-
tion system,” in Proceedings of the IJCAI-95 Workshop on Artificial
Intelligence and Music, 1995.

[63] P. Lopes, A. Liapis, and G. N. Yannakakis, “Framing tension for
game generation,” in Proceedings of the International Conference on
Computational Creativity, 2016.

[64] T. Scaltsas and C. Alexopoulos, “Creating creativity through emotive
thinking,” in Proceedings of the World Congress of Philosophy, 2013.

[65] S. Colton, J. Charnley, and A. Pease, “Computational creativity theory:
The FACE and IDEA descriptive models,” in Proceedings of the
International Conference on Computational Creativity, 2011.

[66] M. O. Riedl and A. Zook, “AI for game production,” in Proceedings of
the IEEE Conference on Computational Intelligence in Games, 2013.

[67] A. Zook and M. O. Riedl, “Game conceptualization and development
processes in the global game jam,” in Proceedings of the FDG
Workshop on the Global Game Jam, 2013.

[68] G. Ritchie, “Some empirical criteria for attributing creativity to a
computer program,” Minds and Machines, vol. 17, pp. 76–99, 2007.

[69] R. Engelmore and T. Morgan, Blackboard Systems. Addison-Wesley,
1988.

[70] H. P. Nii, “The blackboard model of problem solving and the evolution
of blackboard architectures,” AI Magazine, vol. 7, no. 2, pp. 38–53,
1986.

[71] D. D. Corkill, K. Q. Gallagher, and K. E. Murray, “GBB: A generic
blackboard development system,” in Proceedings of the National Con-
ference on Artificial Intelligence, 1986.

[72] B. Hayes-Roth, “A blackboard architecture for control,” Artificial
Intelligence, vol. 26, no. 3, pp. 251–321, 1985.

[73] D. R. Hofstadter and M. Mitchell, “The Copycat project: A model of
mental fluidity and analogy-making,” in Fluid Concepts and Creative
Analogies. Basic Books, 1995, pp. 205–267.

[74] D. R. Hofstadter and G. McGraw, “Letter Spirit: Esthetic perception
and creative play in the rich microcosm of the Roman alphabet,” in
Fluid Concepts and Creative Analogies. Basic Books, 1995, pp. 407–
466.

2475-1502 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TG.2018.2870876, IEEE
Transactions on Games

IEEE TRANSACTIONS ON GAMES 20

[75] A. Liapis, “Multi-segment evolution of dungeon game levels,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2017.

[76] R. Jain, A. Isaksen, C. Holmgård, and J. Togelius, “Autoencoders for
level generation, repair, and recognition,” in Proceedings of the ICCC
Workshop on Computational Creativity and Games, 2016.

[77] H. Takagi, “Interactive evolutionary computation: Fusion of the capa-
bilities of EC optimization and human evaluation,” Proceedings of the
IEEE, vol. 89, no. 9, pp. 1275–1296, 2001, invited Paper.

[78] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Interactive evolution
for the procedural generation of tracks in a high-end racing game,” in
Proceedings of the Genetic and Evolutionary Computation Conference.
ACM, 2011, pp. 395–402.

[79] S. Risi, J. Lehman, D. B. D’Ambrosio, R. Hall, and K. O. Stanley,
“Petalz: Search-based procedural content generation for the casual
gamer,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 8, no. 3, pp. 244–255, 2016.

[80] L. Cardamone, G. N. Yannakakis, J. Togelius, and P. L. Lanzi,
“Evolving interesting maps for a first person shooter,” in Proceedings
of Applications of Evolutionary Computation, 2011, pp. 63–72.

[81] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Automatic content
generation in the Galactic Arms Race video game,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 1, no. 4, pp.
245–263, 2009.

[82] A. K. Hoover, W. Cachia, A. Liapis, and G. N. Yannakakis, “Au-
dioInSpace: exploring the creative fusion of generative audio, visuals
and gameplay,” in Evolutionary and Biologically Inspired Music,
Sound, Art and Design. Springer, 2015, vol. 9027, LNCS.

[83] A. Liapis, G. N. Yannakakis, and J. Togelius, “Designer modeling for
personalized game content creation tools,” in Proceedings of the AIIDE
Workshop on Artificial Intelligence & Game Aesthetics, 2013.

[84] ——, “Designer modeling for Sentient Sketchbook,” in Proceedings of
the IEEE Conference on Computational Intelligence and Games, 2014.

[85] N. Shaker, G. N. Yannakakis, and J. Togelius, “Towards automatic
personalized content generation for platform games,” in Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2010.

[86] N. Shaker, J. Togelius, G. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi,
G. Smith, and R. Baumgarten, “The 2010 Mario AI championship:
Level generation track,” IEEE Transactions on Computational Intelli-
gence and AI in Games, vol. 3, no. 4, pp. 332–347, 2011.

[87] A. Hamilton, “Inside DICE: Creating the beautiful envi-
ronments in Battlefield 3: Armored Kill,” 2012, retrieved
30-11-2017. [Online]. Available: https://www.ea.com/en-gb/news/
battlefield-3-armored-kill-environments

[88] A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient Sketchbook:
Computer-aided game level authoring,” in Proceedings of the Interna-
tional Conference on the Foundations of Digital Games, 2013.

[89] M. Treanor, “Investigating procedural expression and interpretation in
videogames,” Ph.D. dissertation, University of California, Santa Cruz,
2013.

[90] M. Treanor, B. Schweizer, I. Bogost, and M. Mateas, “The micro-
rhetorics of Game-o-Matic,” in Proceedings of the International Con-
ference on the Foundations of Digital Games, 2012.

[91] M. C. Green, G. A. B. Barros, A. Liapis, and J. Togelius, “DATA
agent,” in Proceedings of the 13th Conference on the Foundations of
Digital Games, 2018.

[92] K. O. Stanley, “Exploiting regularity without development,” in Proceed-
ings of the AAAI Fall Symposium on Developmental Systems, 2006.

[93] P. Lopes, A. Liapis, and G. N. Yannakakis, “Sonancia: A multi-
faceted generator for horror,” in Proceedings of the IEEE Conference
on Computational Intelligence and Games, 2016.

[94] M. Cook and S. Colton, “A Puzzling Present: Code modification for
game mechanic design,” in Proceedings of the International Conference
on Computational Creativity, 2013.

[95] M. Cook, S. Colton, A. Raad, and J. Gow, “Mechanic Miner:
Reflection-driven game mechanic discovery and level design,” in Ap-
plications of Evolutionary Computation, 2012, vol. 7835, LNCS.

[96] N. Sorenson, P. Pasquier, and S. DiPaola, “A generic approach to
challenge modeling for the procedural creation of video game levels,”
IEEE Transactions on Computational Intelligence and AI in Games,
vol. 3, no. 3, pp. 229–244, 2011.

[97] A. Isaksen, D. Gopstein, J. Togelius, and A. Nealen, “Exploring game
space of minimal action games via parameter tuning and survival
analysis,” IEEE Transactions on Games, vol. 10, no. 2, pp. 182–194,
2018.

[98] A. M. Smith, E. Andersen, M. Mateas, and Z. Popović, “A case
study of expressively constrainable level design automation tools for a
puzzle game,” in Proceedings of the International Conference on the
Foundations of Digital Games, 2012.

[99] M. Cook, “Would you look at that! Vision-driven procedural level
design,” in Proceedings of the AIIDE Workshop on Experimental AI
in Games, 2015.

[100] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic
personalised content creation for racing games,” in Proceedings of the
IEEE Symposium on Computational Intelligence and Games, 2007.

[101] M. J. Nelson and M. Mateas, “Towards automated game design,” in
AI*IA 2007: Artificial Intelligence and Human-Oriented Computing.
Springer, 2007, pp. 626–637, Lecture Notes in Computer Science 4733.

[102] ——, “An interactive game-design assistant,” in Proceedings of the
13th International Conference on Intelligent User Interfaces, 2008.

[103] J. Orwant, “EGGG: Automated programming for game generation,”
IBM Systems Journal, vol. 39, no. 3.4, pp. 782–794, 2000.

[104] N. I. Holtar, M. J. Nelson, and J. Togelius, “Audioverdrive: Exploring
bidirectional communication between music and gameplay,” in Pro-
ceedings of the International Computer Music Conference, 2013.

[105] C. Ashmore and M. Nitsche, “The quest in a generated world,” in
Proceedings of the 2007 DiGRA Conference, 2007, pp. 503–509.

[106] J. Robertson and R. M. Young, “Automated gameplay generation from
declarative world representations,” in Proceedings of the AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Entertainment,
2015.

[107] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015.

[108] Y. Aytar, C. Vondrick, and A. Torralba, “SoundNet: Learning sound
representations from unlabeled video,” in Proceedings of the Confer-
ence on Neural Information Processing Systems, 2016.

[109] D. Karavolos, A. Liapis, and G. N. Yannakakis, “Learning the patterns
of balance in a multi-player shooter game,” in Proceedings of the FDG
Workshop on Procedural Content Generation, 2017.

[110] ——, “Using a surrogate model of gameplay for automated level
design,” in Proceedings of the IEEE Conference on Computational
Intelligence and Games, 2018.

[111] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K.
Hoover, A. Isaksen, A. Nealen, and J. Togelius, “Procedural content
generation via machine learning (PCGML),” IEEE Transactions on
Games, 2018.

[112] A. Liapis, “Recomposing the Pokémon color palette,” in Applications
of Evolutionary Computation. Springer, 2018, vol. 10784, LNCS.

[113] J. Kowalski, A. Liapis, and Ł. Żarczyński, “Mapping chess aesthetics
onto procedurally generated chess-like games,” in Applications of
Evolutionary Computation. Springer, 2018, vol. 10784, LNCS.

[114] P. Lucas and C. Martinho, “Stay awhile and listen to 3Buddy, a co-
creative level design support tool,” in Proceedings of the International
Conference on Computational Creativity, 2017.

[115] K. Compton and M. Mateas, “Casual creators,” in Proceedings of the
International Conference on Computational Creativity, 2015.

[116] T. Machado, I. Bravi, Z. Wang, A. Nealen, and J. Togelius, “Shop-
ping for game mechanics,” in Proceedings of the FDG Workshop on
Procedural Content Generation, 2016.

[117] S. Colton, “Creativity versus the perception of creativity in compu-
tational systems,” in Proceedings of the AAAI Spring Symposium on
Creative Intelligent Systems, 2008.

[118] B. Samuel, J. McCoy, M. Treanor, A. A. Reed, M. Mateas, and
N. Wardrip-Fruin, “Introducing story sampling: Preliminary results of
a new interactive narrative evaluation technique,” in Proceedings of the
International Conference on the Foundations of Digital Games, 2014.

[119] G. N. Yannakakis, A. Liapis, and C. Alexopoulos, “Mixed-initiative
co-creativity,” in Proceedings of the International Conference on the
Foundations of Digital Games, 2014.

[120] A. Liapis, “Mixed-initiative creative drawing with webIconoscope,” in
Computational Intelligence in Music, Sound, Art and Design. Springer,
2017, vol. 10198, LNCS.

[121] S. M. Lucas, M. Mateas, M. Preuss, P. Spronck, and J. Togelius, “Arti-
ficial and Computational Intelligence in Games: Integration (Dagstuhl
Seminar 15051),” Dagstuhl Reports, vol. 5, no. 1, pp. 207–242, 2015.

