
Linear levels through n-grams

Steve Dahlskog
Computer Science Department

Malmö University
Malmö, Sweden

steve.dahlskog@mah.se

Julian Togelius, Mark J. Nelson
Center for Computer Games Research

IT University of Copenhagen
Copenhagen, Denmark

julian@togelius.com, mjas@itu.dk

ABSTRACT
We show that novel, linear game levels can be created using n-
grams that have been trained on a corpus of existing levels. The
method is fast and simple, and produces levels that are recognisably
in the same style as those in the corpus that it has been trained
on. We use Super Mario Bros. as an example domain, and use a
selection of the levels from the original game as a training corpus.
We treat Mario levels as a left-to-right sequence of vertical level
slices, allowing us to perform level generation in a setting with
some formal similarities to n-gram-based text generation and music
generation. In empirical results, we investigate the effects of corpus
size and n (sequence length). While the applicability of the method
might seem limited to the relatively narrow domain of 2D games,
we argue that many games in effect have linear levels and n-grams
could be used to good effect, given that a suitable alphabet can be
found.

Keywords
Procedural content generation, n-grams, videogames

1. INTRODUCTION
Procedural content generation in games (PCG) is the algorithmic

creation of game content, either with limited or no human input.
Both academia and industry (ranging from AAA-titles to indepen-
dent productions) have shown interest in PCG in the past few years.
PCG has been used to solve numerous content generation prob-
lems ranging from runtime level or item generation to design time
generation of terrain, game rules or vegetation, using a multitude
of different techniques including agents, evolutionary computation,
constraint solving, etc. [16].

Recently, participants in a Dagstuhl symposium on artificial and
computational intelligence and games proposed a set of long-term
goals and research challenges for PCG in a overview paper [15].
These grand goals proposed for PCG are: Multi-level Multi-content
PCG, PCG-based Game Design and Generating Complete Games.
The paper also proposed nine more concrete research challenges
that would support advancement towards reaching the identified
grand goals of PCG. Additionally, five concrete actionable steps

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MindTrek 2014 November 4-7, 2014, Tampere, FINLAND.
Copyright 2014 ACM 978-1-4503-3006-0 ...$15.00.

were proposed, all of which was envisioned to target one or several
of the research challenges.

In this paper we look into one of the proposed concrete research
challenges, Representing Style, and an associated actionable step,
Competent Mario Levels. Representing style means producing a
generative model that follows a particular school of design think-
ing or a particular designer’s recognised style. The Competent
Mario Levels actionable step proposes investigating this question
by creating level generators for the classic platform game Super
Mario Bros. (SMB) with the ability to generate varied, interesting,
playable, entertaining and good-looking levels.

It is instructive to look at domains other than game content gen-
eration to see whether there are methods and ideas that could be
brought to bear on a given content generation problem. Are there
domains that show similarities to the game domain we are cur-
rently investigating, and what techniques do they use? The n-gram
method has frequently been used to model style and generate novel
“randomised” artefacts in two other creative domains, text and mu-
sic. The n-gram method is very simple – essentially, you build
conditional probability tables from strings and sample from these
tables when constructing new strings – and also very fast. As sim-
plicity and speed are virtues in PCG, as in so many other domains,
it is worth investigating the merits of this method seriously. As far
as we know, n-grams have not been used for level generation before
(though 2D Markov chains have; see Section 2.3).

We investigate whether we can model the style of the original
SMB levels by calculating n-gram statistics from those levels, treated
as linear sequences of vertical level slices, and then using the result-
ing Markov level model to produce novel levels that are playable
and similar in style to the original levels. As n-grams are used with
strings of symbols (such as characters or words, when modelling
natural language), we need an “alphabet” for expressing SMB lev-
els as strings. For this purpose, we use a representation of the SMB
levels we call “micro-patterns”, which are thin vertical slices of a
level. In previous work, these slices or micro-patterns were used to
create levels where “meso-patterns” and “macro-patterns” decided
the order of the slices and therefore gave the levels a structure, style
and meaning [3, 4, 5]. Figure 1 shows examples of such slices.

2. CAPTURING PLATFORMER LEVEL
STYLE WITH N-GRAMS

Automatically generating levels for Super-Mario-Bros.-style plat-
former games has been studied relatively frequently by procedural
content generation researchers [7, 10]. SMB levels have several
features that make them tempting to generate automatically. First,
they have a quite obvious recurring, pattern-based structure: any
player who plays for even a short period of time will start to see
similar or even identical patterns of platforms, blocks, and enemy

Figure 1: Different slices (micro-patterns) and a Goomba-
horde.

placement reappear. Secondly, the levels are typically oriented in a
primarily linear, left-to-right direction, so they can be thought of as
a sequence of level elements, which is traversed in order.

2.1 N-gram style capture
Several other (otherwise rather different) domains are also char-

acterised by linear sequences that are traversed in order, and ex-
hibit recurring patterns: sequences of notes (music) and sequences
of words (language) are two well-known domains in which there
has been considerable research into generative methods. An inter-
esting (and early) line of work in such domains has been to model
them purely statistically, at a surface level. By surface level what’s
meant is that models consider only the raw sequences, and don’t
analyse them in terms of higher-level or semantic structures such
as “C major” or “a prepositional phrase”. A simple way to do this
surface-level statistical modelling is based on counting n-grams (n-
element subsequences). Given a corpus of writing or a piece of
music whose style we want to mimic, we count how often each n-
length subsequence appears in the original. We can then produce a
new sequence in the same “style” (for a certain definition of style,
as we shall discuss) by stringing together n-grams sampled from
this bag, weighted according to their original counts1.

In this paper, we experiment with precisely this kind of n-gram-
based generation, but with platformer levels. Our unit is a one-
block-wide vertical slice of a level. A complete level is a left-to-
right sequence of these vertical slices. This gives us a basic problem
formulation very similar to the sequential n-gram-based generation
used in music and natural language, allowing borrowing of tech-
niques and cross-domain comparisons.

2.2 Effects in other domains
Since our focus here is style, it’s worth briefly recounting some

typical stylistic effects that n-gram-based generators have in these
other domains. In language generation, n-gram generation is most
often perceived as a parody of a writer’s style. Such usage dates
back to at least the 1970s [2, item 176], and recurs frequently today,
for example in web-based generators that produce n-gram-based
mimicry of a Twitter user’s updates. Such generators produce a
kind of uncanny surface-level reproduction of style: they mimic
the sequences of words that a particular writer typically strings to-
gether, but when interpreted as sentences or paragraphs, the result
is usually nonsense, with little to no interpretable semantic mean-
ing or higher-level structure.

It seems unlikely that level generation will be interpreted in pre-
cisely the same way, as a parody of a game’s levels—though this

1From a more statistical viewpoint, counting n-grams gives us the
maximum likelihood estimate of a (n − 1)th order Markov model
presumed to have generated the observed text. Generation then
consists of sampling from this Markov model.

possibility cannot be ruled out completely. Levels are not typically
communicating the same kind of high-level semantic information
via their structure as natural language is, and the surface-level style
is comparably more important.

A closer comparison may be the case of music. There, the pri-
mary complaint has been that n-grams fail to produce interesting
high-level structure, at least without being pushed in a way that
causes them to lose most of their generativity [9, ch. 3]. With a low
n, the music ends up consisting of notes that are locally reasonable,
but with an overall piece that wanders in an uninteresting, aimless
way, lacking conventional musical features such as movements,
recurring themes, loud and quiet periods, perhaps even an inter-
pretable time signature. On the other hand, when n is increased to
add larger context to the generator, it soon degenerates into splic-
ing together large preexisting snippets of music—the result of an
overfit (insufficiently smoothed) statistical model.

Therefore one of our initial questions to investigate here is whether
n-gram generation in Mario-style levels results in the same basic
problem, of level that are either too wandering, or too cut-and-
pasted verbatim from the source material.

2.3 Information content
Viewing platformer levels as sequences of slices leads to interest-

ing analytical and generative possibilities connected to information
content and/or entropy of the various sequences. Essentially any
sequence of units can be seen as a code transmitting information,
and be analysed (with more or less usefulness) using tools from
information theory. In fact the first instance of n-gram-based mod-
elling of natural language was performed by Claude Shannon, in
the same paper in which he introduced information theory [11].

Later papers used the approach to, for example, statistically char-
acterise the average information carried by each letter of the En-
glish alphabet [12]. Use of the information-theory connection to
provide control over a generative process also has old roots, dat-
ing at least back to 1960s work in computer-music, which used the
entropy rate estimated from a Markov model as a tuning knob that
the composer could use to vary the entropy of different parts of a
piece [6].2 To our knowledge, similar investigations haven’t yet
been performed with videogame levels.

This intent to investigate levels as sequences, and thereby gain a
close connection to both information theory and previous work in
sequence-based Markov modelling in other domains, is also why
we don’t follow Snodgrass and Ontañón [14] in modelling plat-
former levels as two-dimensional grids of blocks, and instead use
one-dimensional sequences of vertical slices. Two-dimensional ex-
tensions of Markov models, such as Markov random fields, have
considerably different properties and less of a direct connection to
progression over time—though they are indeed interesting to inves-
tigate in their own right, and this work is the most closely related
to ours, in that it also uses corpus-based statistical modelling to
capture level style.

3. METHODS
We represent levels as sequences of vertical level slices (or mi-

cropatterns). The full corpus of levels we used for n-gram train-
ing is comprised of 15 levels from the original SMB game. This
includes all levels in the game except for those that have consid-
erably different mechanics from the “normal” ones: water levels,
mushroom-platform levels, and boss-fight levels are excluded. In
addition, we use the slices within each individual level as “per-

2For a survey of the uses of Markov modelling for generative mu-
sic, see [1].

Figure 2: From left to right: the 32 most common slices from
the original SMB levels. These slices would therefore be the
most frequent unigrams.

level” corpora, in order to investigate whether generators trained
on different levels, or combinations of levels, have noticeably dif-
ferent styles.

The original levels vary in length from less than 200 to more than
300 blocks/slices; when generating, we chose a fixed level length
of 100. If we incorporate all levels into one single slice-library,
several unique slices (seen only once in the game) are found. The
largest single addition to the slice library is from level 1–2, due to
its “roof” of brick-tiles almost at the top of the screen, which is
an unusual arrangement. Combining levels 1–1 and 1–2 more than
doubles the slice library from 29 to 73 slices. Figure 2 shows the
most common slices that make up the SMB levels.

Our n-gram implementation works by creating separate tables of
occurrences for unigrams, bigrams and trigrams. When generating
new array (levels), probability tables are calculated based on the
occurrence tables. Each new symbol is chosen directly based on its
independent probability for unigrams (i.e. the probability for each
symbol is exactly its frequency in the original levels). For bigrams,
the probability for each symbol is its conditional probability given
the preceding character; and for trigrams, its conditional probabil-
ity given the two previous characters.

There are some special cases. When generating a level using a
bigram, the first character will be based on a unigram trained on the
same corpus (as there is no preceding character). When using a tri-
gram, the first two characters are based on unigrams. Another spe-
cial case is for bigrams or (especially) trigrams, when the preceding
character or combination of characters has never been followed by
anything at all in the corpus. In this case we use a fallback: if there
is no trigram match for a character combination, we fall back to a
bigram, and if there is no bigram, we fall back to a unigram.3

4. RESULTS
After initial validation of the functionality of the method, we

carried out experiments to investigate the effects of varying n, the
effects of varying the training corpus, and to characterise the ex-
pressive range of the n-gram generator. We also compared the char-
acteristics of generated levels with those in the initial corpus.

4.1 Effects of varying n
The effects of varying n are rather drastic. Essentially, unigrams

produce a haphazard mess, bigrams produce some local structure
with much repetition and trigrams produce levels with good local
structure that are stylistically similar to the training corpus. In order

3This is a fairly simple back-off model, essentially a special case of
the widely used Katz back-off model [8], with a back-off threshold
of 0, and no discounting.

Figure 3: Unigram-based (n = 1) levels with SMB World 1–
Level 1 as corpus.

to demonstrate these effects we have randomly picked five example
levels generated with each configuration.

In figures 3, 4 and 5, we use the same corpus; namely the first
level of SMB (199 tiles wide and 14 tiles high) containing 30 dif-
ferent slices. For space saving purposes we have chosen levels of
length 100 tiles for all our examples.

In figure 3 we use n = 1 for our n-grams, resulting in a rather
cluttered level layout with one additional drawback: incorrect pipes.
Even though the pipes would be mendable with some rules for the
generator, this may need some testing in order to balance the oc-
currence of pipes. Overall, these levels lack a feel of designed
structures, and there is no sense given of imitating any particular
style.

After the unigram test we moved on to bigrams (n = 2). Figure 4
shows example generated levels, which have working pipes, but
also some strange (by SMB standards, that is) “mountain ranges”,
stairs going both up and down. There are also very few enemies
present. Although there seem to be some kind of designed struc-
tures, the presence of mountain ranges, however distinct in style,
does not convey the style of World 1–Level 1, or of any level in the
original SMB. When we increase n to 3, as seen in figure 5, we
get correct structures instantiating meso-level design patterns like
pipe valleys and stairs (see discussion in [3]), and enemies are also
present. Overall, these levels bear a strong stylistic similarity to
SMB World 1–Level 1 .

4.2 Effects of varying training data
Of course, SMB contains a lot more content than just World 1–

Level 1 (1–1). There are 32 levels across 8 worlds, some of which
are very different from the others in style, e.g. water levels and boss
fight levels. But the appearance of diversity is to some extent de-
ceptive, as several levels are minor but clever variations of others.
For instance, levels 1–3 and 5–3 are structurally identical, but with
Bullet Bills added to 5–3. Likewise, levels 5–1 and 7–1 are struc-
turally similar, but 7–1 is more Bullet Bill-dense. And levels 1–1,
2–1, and 6–2 are all similar, and fairly similar to 1–2 and 4–2.

In order to investigate the results of training n-grams on more

Figure 4: Bigram-based (n = 2) levels with SMB world 1–level
1 as corpus.

Figure 5: Trigram-based (n = 3) levels with SMB 1–1 as cor-
pus.

Figure 6: Trigram-based (n = 3) levels with SMB 1–1, 1–2 as
corpus.

than one level, we created two new corpora: one based on levels 1–
1 and 1–2 (see figure 6) and another based on levels 1–1, 1–2 and
2–1 (see figure 7). The combined corpora were created by simply
concatenating levels. In figure 6, we can see the effect of training on
a corpus consisting of multiple levels in subfigures 3 and 5, where
the generated level abruptly changes style. Both begin with the
style of level 1–2, and whereas the last one ends in the style of 1–1,
the middle one returns to the style of 1–2 after generating a middle
section in the style of 1–1.

Continuing with figure 7 we can see that the combination of dif-
ferent levels (e.g. all levels present in the middle and last one) as
well as times when the generator sticks to one level style (e.g. the
second example). By training on specific levels, the generator fol-
lows that particular style for that level, but the larger the corpus, the
larger the variation.

As we extended our corpus to include all ground-based levels (no
boss, no water and no mushroom/platform levels) each level’s traits
became part of the corpus and thus influenced the output. Unfortu-
nately the structure of levels becomes clear when incorporating 15
levels (including under-ground levels). Each level starts off with
16 “simple ground” slices with just ground and nothing interest-
ing allowing the player to start in a safe spot. The effect on the
generated levels is wide sections of space and nothing interesting
from a play perspective. In order to generate interesting levels we
shorten these safe-spots so that they do not become to influential in
the corpus. We also remove the underground levels for the purpose
of preserving the style of surface-levels.

4.3 Expressive range
In order to show the diversity of the method we employ the con-

cept of expressive range analysis [7, 13]. Expressive range analysis
is a tool for characterising and exploring a PCG method by using
a metric; essentially, a number of artifacts (in this case levels) are
independently generated, and plotted in the 2-dimensional space of
two different metrics. We use the metrics Linearity and Leniency
for expressive range comparison (see figure 8 and table 1). A level
with a high linearity value forces the player to jump more often

Figure 7: Trigram-based (n = 3) levels with SMB 1–1, 1–2 and
2–1 as corpus.

(a) Level: 704 Linearity +96 (MAX).

(b) Level 118: Linearity −16 (MIN).

(c) Level 50: Leniency +8 (MIN).

(d) Level 20: Leniency +44 (MAX).

Figure 8: (n = 3) levels with pruned corpus 2600 slices (15
levels from the original SMB with the first screen of each level
removed).

Figure 9: Leniency and Linearity for 1000 above ground
pruned levels. Higher Leniency means more difficult. Higher
Linearity means flatter levels.

Table 1: Linearity and Leniency.
n-gram callbacks per 1000 levels 252
Linearity Average 51.23
Linearity MIN -16
Linearity MAX 96
Linearity DEV. 16.79
Leniency Average 23.704
Leniency MIN 8
Leniency MAX 44
Leniency STD. 6.01

than a level with low linearity value. High Leniency means more
enemies and gaps where the player may lose a life. An expressive
range analysis of 1000 generated levels shows that the output of
the n-gram level generator exhibits considerable diversity, at least
in these two dimensions.

5. LARGE SCALE COMPARISON
To answer the question of whether this method really allows us

to copy style, we did a large scale statistical study of whether gen-
erated levels retain the style of those levels that go into their corpus.
We chose to use the measures of linearity and leniency, discussed
above, as measures of style. If the levels that are generated from
a particular corpus have similar measures values for linearity and
leniency as those in the corpus, we reason that the levels are similar
in style in at least this respect.

We generated 1000 levels based on each original level (only one
level in the corpus). We measured the linearity and leniency for
each original level and compared that value to the calculated aver-
age value for each of the groups of the generated levels. In general,
levels generated using n-grams have linearity and leniency values
very close to those of the original levels (see Table 2). Exceptions
do exist (World 3–Level 1 and 5–1 differ on leniency, and level 1–3
differs on linearity). For level 1–3 the difference may be related to
the short original level (length 140), but the other two levels have
just below average length. Level 5–1 is on the other hand rather

Table 2: Linearity & Leniency comparison between original & average value (1000 generated levels).
Corpus Lin. (SMB) Lin. (gen.) STD (gen.) Len. (SMB) Len. (gen.) STD (gen.)

1-1 26.995 26.486 7.599 -8.295 -8.108 8.481
1-2 19.490 19.277 9.025 10.365 10.241 11.445
1-3 46.030 49.286 16.501 -1.623 -1.429 13.055
2-1 20.152 19.900 5.619 7.082 6.965 7.412
2-3 61.190 60.177 13.822 -35.778 -35.398 18.041
3-1 32.995 33.511 9.012 0.108 -0.532 8.971
3-2 16.385 16.176 7.506 1.455 1.4715 10.538
3-3 45.574 44.286 15.042 -3.983 -3.571 10.548
4-1 15.133 15.640 7.878 16.044 16.588 13.291
4-2 27.411 27.273 11.660 14.318 13.904 14.405
4-3 51.682 51.449 10.336 -22.575 -22.464 9.481
5-1 19.484 19.251 5.345 -1.538 -1.070 8.430
5-2 22.967 22.660 7.258 2.101 1.970 7.547
5-3 43.299 42.857 15.929 -2.731 -2.857 11.812
6-1 31.809 31.609 9.377 -17.194 -17.241 10.516
6-2 34.753 34.597 6.126 20.397 19.905 7.717
6-3 49.930 49.359 8.925 -9.496 -8.974 13.213
7-1 23.768 23.780 7.244 8.372 7.927 9.185
7-3 67.247 66.667 11.575 -40.883 -41.441 19.876
8-1 20.544 20.442 5.922 13.615 13.536 11.656
8-2 16.533 16.019 7.512 17.336 17.476 7.846
8-3 16.273 16.337 8.355 9.288 8.911 6.427

spacious, which may account for the difference in leniency.
The Pearson correlation between linearity of source and gener-

ated levels is 0.9985; for leniency, the value is 0.9998. These very
strong correlations confirm that the generated levels are indeed very
similar to the source levels using this particular measure of style.

6. DISCUSSION
It is clear that several of the configurations of the n-gram level

generator, in particular trigrams trained on one level or a few sim-
ilar levels, generate playable and good-looking levels in the style
of those that form the corpus. Thus, the method performs well ac-
cording to the original criteria (it also takes mere milliseconds to
generate a level). It is worth discussing what makes the method
work, and how it could be used for other game content generation
problems.

6.1 The importance of the representation
The success of the n-gram method in this study is partly because

we managed to find a useful set of building blocks for the levels,
or in other words a suitable “alphabet”. The micro-patterns are
few enough to allow meaningful n-gram training even with a small
corpus of just a few levels, or in other words strings of just a few
hundred characters’ length.

A key part of the representation is that the level is seen as a sin-
gle string, i.e. one-dimensionally. Several other ways of represent-
ing an SMB level for n-gram generation would be possible. For
example, we could generate each row of blocks separately, with
the alphabet consisting of individual blocks and each level consist-
ing of 15 or 20 strings on top of each other. This would have the
advantage of a small alphabet, but the considerable disadvantage
of the different rows being completely disconnected and the level
likely being unplayable. A similar effect would be expected if try-
ing to generate columns rather than rows. While Snodgrass and
Ontañón [14] use individual blocks as their alphabet, their use of a
2D Markov chain technique allows this as it takes both horizontal

and vertical interactions into account [14].
One could also imagine using longer, larger building blocks, for

example sequences that are 5-10 blocks wide, similar to the meso-
patterns in our original pattern analysis of SMB levels. However,
this would lead to much less perceived variety, as the individual
building blocks would be easily identifiable as components of the
level.

6.2 Pruning the corpus
In our case the corpus contains several longer sections where the

only slice used is the simple ground, since almost all levels in SMB
start with 16 slices (a whole screen) of safe area for the player to
start in. These longer simple ground sections can skew the n-gram-
generation to create uninteresting sections; since n-gram generation
has no high-level context, these runs intended to appear at only
the beginning of levels can also end up appearing in the middle
of them. Similarly, the presence of either extremely common or
extremely unique sequences may result in stereotyped structures
being simply “copied” from the training corpus recognisably, lim-
iting the variety (in the second example of figure 7, the “c”-like
structure appears twice). If the corpus is unbalanced in such man-
ner, we suggest pruning it to reach the desired effect. Alternatively,
the generation algorithm could be modified through using a log-
arithmic transformation on the frequencies, so that less frequent
slices are relatively more often chosen (there are many other possi-
ble smoothing methods and frequency transformations that can be
tried).

6.3 Linearity in game levels
While the method presented here works well for SMB levels, it

could be argued that its usefulness is limited to other side-scrolling
platformers, or perhaps also similar games such as 2D scrolling
shooters (e.g. R-type). However, this restriction is not quite as se-
vere as it may appear, if we take into account games whose levels
are structurally linear, even if they don’t appear as literal left-to-

right side-scrolling sequences. Many games that ostensibly feature
3D worlds with full 3D spatial movement are actually built on lin-
ear levels; examples include shooters such as Halo and Call of Duty
(in campaign mode at least), racing games such as Need for Speed
and Forza Motorsport and 3D endless runners such as Temple Run
and Canabalt. Given the identification of a suitable alphabet, the
n-gram method could be used as is. Branching paths could be han-
dled by simply generating separate strings for the different paths
following a branching point.

7. CONCLUSION
We have shown that n-grams, trained on a corpus consisting of

one or several levels from the original SMB game, can be used to
effectively generate levels that are similar in style to the level(s)
used in the corpus. The method is fast and reliable, and gives a
reasonable diversity in several dimensions. Using n = 3 gives
markedly better results than n = 2 and particularly compared to
n = 1 in terms of the visual appeal of the level, and most probably
in terms of playability as well. Using a corpus consisting of several
levels increases the variety among produced levels, but can lead to
surprising shifts in style. It is also found that the generated levels
are indeed (on average) very similar to the levels used to learn the n-
grams, showed that the method accurately reproduces at least some
aspects of style. This simple method has potential to be useful for a
large number of games, and should be investigated further in other
game domains.

8. REFERENCES
[1] C. Ames. The Markov process as a compositional model: A

survey and tutorial. Leonardo, 22(2):175–187, 1989.
[2] M. Beeler, R. W. Gosper, and R. Schroeppel. HAKMEM.

Technical Report AIM 239, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, 1972.

[3] S. Dahlskog and J. Togelius. Patterns and procedural content
generation: Revisiting Mario in World 1 Level 1. In
Proceedings of the First Workshop on Design Patterns in
Games, 2012.

[4] S. Dahlskog and J. Togelius. Patterns as objectives for level
generation. In Proceedings of the Second Workshop on
Design Patterns in Games, 2013.

[5] S. Dahlskog and J. Togelius. Procedural content generation
using patterns as objectives. In Proceedings of EvoGames,
part of EvoStar, 2014.

[6] L. A. Hiller and R. A. Baker. Computer Cantata: An
investigation of compositional procedure. Perspectives of
New Music, 3:62–90, 1964.

[7] B. Horn, S. Dahlskog, N. Shaker, G. Smith, and J. Togelius.
A comparative evaluation of procedural level generators in
the Mario AI framework. In Proceedings of the 9th
International Conference on the Foundations of Digital
Games, 2014.

[8] S. M. Katz. Estimation of probabilities from sparse data for
the language model component of a speech recognizer. IEEE
Transactions on Acoustics, Speech, and Signal Processing,
35(3):400–401, 1987.

[9] G. Nierhaus. Algorithmic Composition: Paradigms of
Automated Music Generation. Springer, 2009.

[10] N. Shaker, J. Togelius, G. N. Yannakakis, B. G. Weber,
T. Shimizu, T. Hashiyama, N. Sorenson, P. Pasquier, P. A.
Mawhorter, G. Takahashi, G. Smith, and R. Baumgarten. The
2010 Mario AI championship: Level generation track. IEEE

Transactions on Computational Intelligence and AI in
Games, 3(4):332–347, 2011.

[11] C. E. Shannon. A mathematical theory of communication.
Bell System Technical Journal, 27(3):379–423, 1948.

[12] C. E. Shannon. Prediction and entropy of printed English.
Bell System Technical Journal, 30(1):50–64, 1951.

[13] G. Smith and J. Whitehead. Analyzing the expressive range
of a level generator. In Proceedings of the First Workshop on
Procedural Content Generation in Games, 2010.

[14] S. Snodgrass and S. Ontañón. Generating maps using
Markov chains. In Proceedings of the 2013 AIIDE Workshop
on Artificial Intelligence and Game Aesthetics, pages 25–28,
2013.

[15] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas,
A. Paiva, M. Preuss, and K. O. Stanley. Procedural content
generation: Goals, challenges and actionable steps. In
Dagstuhl Seminar 12191: Artificial and Computational
Intelligence in Games. Dagstuhl, 2013.

[16] J. Togelius, N. Shaker, and M. J. Nelson. Introduction. In
N. Shaker, J. Togelius, and M. J. Nelson, editors, Procedural
Content Generation in Games: A Textbook and an Overview
of Current Research. Springer, 2014.

