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ABSTRACT
Although MIDI is often used for computer-based interac-
tive music applications, its real-time performance is rarely
quantified, despite concerns about whether it is capable of
adequate performance in realistic settings. We extend exist-
ing proposals for MIDI performance benchmarking so they
are useful in realistic interactive scenarios, including those
with heavy MIDI traffic and CPU load. We have produced
a cross-platform freely-available testing suite that is easy to
use, and have used it to survey the interactive performance
of several commonly-used computer/MIDI setups. We de-
scribe the suite, summarize the results of our performance
survey, and detail the benefits of this testing methodology.

1. INTRODUCTION
MIDI—the most widely-used standard for interconnecting
electronic music devices—was originally designed to provide
low-latency transmission of messages between devices, but
whether it succeeds in doing so in highly interactive real-
time settings has been questioned [7, 5]. Quantifying its
latency is crucial because even very small timing variations
can be musically perceptible: Researchers have proposed
values as low as 1 to 1.5 milliseconds as an acceptable range
of latency variation [5, 7], and around 10 milliseconds as an
acceptable upper bound on absolute latency [7, 3].

MIDI’s fixed data rate means delays between stand-alone
synthesizers sending messages of fixed size are trivial to
calculate, consistent, and relatively small. Our concern is
with latencies that arise when MIDI is used to communi-
cate with software running on a general-purpose computer
system, a common scenario in interactive computer music
systems (e.g. [2, 4]). We use system to refer to a computer
and all its relevant interconnected parts: MIDI interface, pe-
ripherals bus, operating system, drivers, configuration, and
so on. These parts may all introduce additional latency,
typically greater than the latencies of MIDI’s physical layer,
and certainly less consistent.

Benchmarking MIDI’s latency in realistic settings is valu-
able, both to evaluate when its real-time performance is ac-
ceptable, and to determine the expected errors for times-
tamped data. Unfortunately, it rarely done, and when em-
pirical measurements are made at all, they are often limited.
For example, Wright and Brandt [9, 8] provide a method for
measuring MIDI latency that is notably independent, with
measurements made externally, rather than by the system
under test. These tests, however, used single active sense
messages, no system load, and had low-level system soft-
ware generating responses. A more complete (albeit dated)
analysis of latency in off-the-shelf operating systems under
various loads and configurations was done by Brandt and
Dannenberg [3], but their measurements were not external.

To address these shortcomings, we have developed a freely
available cross-platform software package1 that, when used
in conjunction with the inexpensive and easy-to-build MIDI-
Wave transcoder circuit proposed by Wright and Brandt,
can independently test the performance of a system in-place
under a variety of realistic conditions. Such a tool is impor-
tant because performance depends on so many factors that
testing performance on a particular setup is desirable.

To allow our test suite to capture realistic conditions, we sig-
nificantly extend upon the methodologies of Brandt, Dan-
nenberg, and Wright. For example, in addition to repeating
simpler tests, we propose more realistic burst and load tests,
and these produce markedly different results. Burst tests pe-
riodically transmit groups of multiple MIDI note messages,
mimicking situations that arise when there is real-time back-
ground accompaniment. Load tests do the same under CPU
load, a likely scenario, especially with artificial intelligence
techniques. Because our test platform is based on PortMidi,
a light-weight cross-platform MIDI library,2 it tests a con-
figuration in which actual applications can be written.

We have used our software package, proposed benchmarks,
and the MIDI-Wave transcoder to survey the performance
of several popular MIDI interfaces on three major consumer
operating systems (Linux, Mac OS X, and Windows). While
these tests are not exhaustive, they provide useful points of
reference, and to our knowledge there is no such overview
currently available. We do caution that these results should
not be taken as a definitive statement on which operating
systems or interfaces perform best, for performance is so
system-specific. An important byproduct of this work is
that it will allow others to test their own systems.

2. METHODOLOGY
We use the MIDI-Wave transcoder, as shown in Figure 1.
In a given test, there are two systems: the REF system
generates a REF stream of MIDI messages to send to the
TEST system, which forwards them back out as the TEST
stream. Copies of each stream are transcoded into audio
signals and sent, one in each channel, to the REF system’s
soundcard line-in.3 An example of this two-channel signal
is shown in Figure 1. Delays between the two channels are
analyzed in real time, as described in Section 2.2.

We modified Wright and Brandt’s original tests to make
them more general. A simple PortMidi application checks
for MIDI input once per millisecond on the TEST system

1http://www.cs.hmc.edu/∼bthom/downloads/midi/
2http://www.cs.cmu.edu/∼music/portmusic/
3The audio signal is the raw MIDI signal converted into the
right voltage range for audio, allowing us to use a soundcard
as a cheap, readily-available two-channel voltage sampler.
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Figure 1: An overview of the MIDI-Wave setup
(left) and sample transcoder-produced audio (right).

and forwards it back out; the original tests instead per-
formed MIDI-through using the proprietary Cubase sequenc-
ing software. Although Cubase’s MIDI-through sits at a low
system level and so provides better performance, it does not
allow for user software to access the incoming MIDI data, a
severe limitation.

In addition to test duration, users can vary the number and
types of messages in each burst, the frequency with which
bursts are generated, and may also run the tests under sim-
ulated load (arbitrary arithmetic on a 1-megabyte matrix).
Wright and Brandt’s tests sent periodic active sensing mes-
sages, because these are typically not treated in special ways
by drivers. While our software can test active sensing, we
are more interested in testing performance on real notes,
and especially groups of notes.

We chose three types of hour-long tests for our benchmarks:

• sense: one active sensing message every 35 ms.
• burst : bursts of 10 note-on/off messages every 100 ms.
• load burst : same as burst, but with load.

The REF computer runs an integrated cross-platform Port-
Midi/PortAudio4 application. The PortMidi component gen-
erates the REF stream and the PortAudio component per-
forms the real-time audio analysis.

2.1 Terminology
Latency is the delay produced by the system when trans-
mitting a MIDI message; in the sample transcoder audio in
Figure 1, the two latencies are t2 − t1 and t4 − t3. Jitter is
how much this delay varies, and peak jitter is the difference
between the maximum and minimum latencies. The im-
portance of latency and jitter depends on the application.
For interactive systems, low latency is necessary to keep
systems from seeming sluggish. If latency is low, jitter—the
deviation in latency—must necessarily be low. However, jit-
ter may still be very important: In non-interactive systems,
higher latency may not be as detrimental as long as jitter is
low, and even in interactive systems, perceptual constraints
on jitter are tighter than those on latency.

Width is the time it takes for a burst of messages to be trans-
mitted. Our primary interest in width is that it allows us to
detect when a TEST system is incapable of sending out all
of the MIDI messages received in a burst in a timely man-
ner. For instance, we’ve often seen spaces inserted between
parts of a burst message, resulting in an overall “stretched”

4PortAudio [1] performs a similar function for audio that
PortMidi does for MIDI (http://www.portaudio.com).

width. To quantify this inconsistency, we calculate the peak
jitter in widths.

2.2 Real-Time Analysis
We use a simple thresholding algorithm to locate bursts in
each stream. Bursts in the REF stream are matched up with
corresponding bursts in the TEST stream and compared to
calculate latency and width, both of which are stored in his-
tograms. The histograms, which capture the distributional
aspects of latency and width, in turn quantify jitter.

Our thresholding method requires that message “groups”—
either single active sense messages or bursts of multiple
messages—be well-separated, allowing us to identify where
one ends and another begins. Wright and Brandt must have
used a more complex signal analysis scheme (perhaps auto-
correlating over the entire stream), for they analyzed data
collected from active sensing messages sent every 4 ms, even
though they reported latencies of up to 10 ms.

Although our thresholding scheme requires larger periods,
there are benefits. Light-weight real-time analysis is needed
if one wants to run tests for lengthy periods of time, which
can prove useful. For example, in our tests worst-case per-
formance over an hour was in some cases 5–7 ms worse than
over 15 seconds. In some cases even longer tests may be de-
sirable, and for those the alternative to real-time analysis—
storing and analyzing 6 GB of data for a 10-hour test—is not
very appealing. Another benefit of our simple algorithm is
that analysis errors are essentially eliminated: because our
software requires that each REF and TEST group match,
an error in detecting a threshold is very likely to produce a
failed test rather than faulty data.

2.3 System Configurations Tested
Interfaces:

• Midiman MidiSport (2x2), USB
• MOTU Fastlane (Motu), USB
• EgoSys Miditerminal 4140 (4140), parallel port

• Creative Labs SoundBlaster Live! 5.1 (SB or SBLive),

PCI (MPU-401 compatible)

Operating systems (and their MIDI APIs):
• Linux with 2.4-series kernel (Linux 2.4) using the De-

bian GNU/Linux distribution with ALSA 0.9.4, kernel 2.4.20,
and some low-latency patches.5

• Linux with 2.6-series kernel (Linux 2.6), as above but
with ALSA 0.9.7, kernel 2.6.0, and no special patches.

• Mac OS X (OSX) 10.3.2 (Panther) with CoreMIDI.
• Windows 2000 (Win2k) SP4 with WinMME.

• Windows XP (WinXP) SP1 with WinMME.

Computers:
• HP Pavilion 751n desktop (HP) with 1.8 GHz Intel

Pentium 4 processor and 256 MB RAM.
• Apple Mac G4 desktop (G4) with dual 500 MHz G4

processors and 320 MB RAM.

• IBM Thinkpad T23 laptop (T23) with 1.2 GHz Intel

Pentium II processor and 512 MB RAM.

Previous tests [9] suggest that USB interfaces, which are
newer but quickly becoming the de facto standard, per-
form worse than “legacy” interfaces (parallel port, PCI, se-
rial port), so we have tested both types. We did not test
5Robert M. Love’s variable-Hz (Hz=1000) and pre-emptible
kernel patches and Andrew Morton’s low-latency patch.



FireWire interfaces since their expense prohibits general us-
age. For the OSX and Windows tests, we used the newest
drivers available as of November 2003 from their manufac-
turers. None of the manufacturers provide Linux drivers, so
reverse-engineered open-source drivers were used.6

Not all interfaces could be tested on all operating systems:
OSX’s CoreMIDI only supports the USB interfaces; no Linux
drivers are available for the 4140; we were unsuccessful in
getting the Motu to work under Linux; and the early revi-
sions of Linux 2.6 available at the time of testing had USB
problems on some hardware.

3. RESULTS
A single test run produces a set of histograms like those
shown in Figure 2. The Transcoder Latency and Test Width
histograms together reasonably characterize performance.

The Test Callback Latency histogram displays data collected
by the TEST system in software, indicating the variability
the TEST system’s clock witnessed in its periodic schedul-
ing of a 1-ms timer (the timer which serviced MIDI-thru).
It makes perfect sense that the callback and transcoder his-
tograms correlate somewhat, for an obvious possible source
of MIDI latency is an operating system’s ability to schedule
things on time. One might be tempted to conclude that a
software-based approach to performance testing would suf-
fice; indeed, at least one previous performance analysis re-
lied on this method [3]. However, as Figure 2 illustrates,
the software histogram provides a much less accurate indi-
cation of the latency distribution than is available with the
transcoder. For this reason, we recommend spending the
extra effort needed to build one.

Notice the difference in variability between the TEST and
REF width histograms. The REF system (Linux 2.4, HP,
SBLive) was only producing periodic bursts of output, and
it was able to do so very consistently. The TEST system,
which had to process asynchronous MIDI input and then
send it back out, had a much more difficult time. We saw
this kind of behavior on virtually every system, so we recom-
mend that bi-directional communication be a primary focus
when measuring real-time performance.

Our performance survey results are summarized in Table 1
using a variety of summary statistics: the mean latency, its
standard deviation, and so on. Although summary statis-
tics are commonly used to quantify results, they tend to
obscure valuable information about the underlying distribu-
tions. For example, since the leftmost histogram in Figure 2
is clearly bimodal, mean and standard deviation parameters
are inadequate. Histograms are not perfect either: though
they retain information about the distribution of latencies,
they throw away information about how these latencies vary
over time. To provide a broad overview of performance we
use the summary statistics here, and discuss temporal de-
pendence in more detail elsewhere [6]. Keep in mind that,
to the degree that deviations in inter-event intervals vary
somewhat systematically over time, both summary and his-
togram statistics might paint a more pessimistic picture

6The emu10k1 ALSA driver for the SBLive, and the
usb-midi driver for the 2x2.

than the capabilities of human perception—which occurs in
time—might warrant.

The good news is that the best-performing systems in our
tests exhibit performance very close to targets that researchers
have proposed: 10-ms latency and 1- to 1.5-ms jitter. Our
best overall performer was the SBLive on the HP desktop
running WinXP. Its worst case (the load burst test) resulted
in a maximum latency of 2.8 ms, peak jitter of 2.0 ms, and
peak burst width jitter of 1.2 ms.

The bad news is that none of the other configurations ex-
hibited performance at this level, at least when running un-
der load. A common problem, exhibited by the otherwise
admirably-performing 2x2 on the G4 running OSX, is fairly
large width jitter under load. Unfortunately, although sin-
gle notes have low latency and jitter, the notes towards the
end of a burst have significantly higher jitter. Perceptu-
ally the impact of this behavior might lead to chords that
sound arpeggiated. The worst victim of system load was the
4140, which, while outperforming the USB interfaces with-
out load, degrades very badly when loaded. With minimal
system load, some problems disappear, and several more in-
terfaces have performance reasonably close to the target val-
ues. Moreover, if messages are kept relatively sparse without
large bursts, about half the interfaces perform reasonably
well, with jitter under 4 ms.

One pleasant result is that Linux’s performance has vastly
improved. For those who can tolerate 5–7-ms jitter, the
SBLive on Linux 2.6 is acceptable, as are the USB interfaces
on OSX. The latter will be particularly useful if G4 laptops
perform similarly to desktops. Unfortunately, we have not
found a good solution for PC laptops, which do not support
PCI soundcards like the SBLive. While we had originally
purchased the 4140, hoping that a low-level parallel port in-
terface would perform better than the USB alternative, its
poor performance under load makes it impractical. We em-
phasize this particular example because it powerfully illus-
trates the need to replace ad-hoc guesses about performance
with rigorous testing.

4. FUTURE WORK
Further modifications to our testing tools are worth ex-
ploring in order to increase the range of situations that
they can test. In particular, the constraint that bursts
be well-separated would be nice to do away with. It has
been suggested to us7 that integrating a UART into the
transcoder might allow us to convert each MIDI byte into
a well-separated single spike. An extension like this would
allow us to test periodic MIDI traffic at higher frequencies.

Also worth exploring are the “scheduled output” MIDI APIs
found on many operating systems. This technology allows
a MIDI message to be scheduled for output at some point
in the future, instead of sending it out immediately. If mes-
sages were scheduled to be output in, say, 1 to 5 ms, this
might pass off high-priority scheduling into the operating
system kernel, where it might be serviced more consistently,
perhaps allowing applications to trade off an increase in la-
tency for a decrease in jitter.

7Roger Dannenberg, personal communication.
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Figure 2: A sample selection of histograms (burst on T23 Win2k 4140).

System Sense (msec) Burst (msec) Load Burst (msec)
µ σ m p ≥10 µ σ m p ≥10 mw pw µ σ m p ≥10 mw pw

HP Linux2.6 SB 0.8 0.3 2.3 2.1 0.0 1.1 0.3 5.5 4.9 0.0 9.6 3.4 1.2 0.3 7.6 7.0 0.0 8.6 2.4
HP Linux2.4 SB 0.8 0.4 25.6 25.4 0.6 1.2 0.4 23.5 22.9 1.0 38.8 32.6 1.2 0.4 26.6 26.0 1.1 23.9 17.7
HP Linux2.4 2x2 2.2 0.5 25.7 24.7 3.6 2.7 0.5 30.5 29.3 4.2 32.3 24.9 3.7 0.5 36.4 34.4 3.7 29.0 21.6
G4 OSX 2x2 3.5 0.4 4.6 2.2 0.0 3.6 0.4 4.8 2.4 0.0 11.6 2.2 3.6 0.4 5.8 3.2 0.0 18.1 8.7
G4 OSX Motu 5.4 0.6 7.0 3.4 0.0 5.4 0.6 8.3 4.9 0.0 10.3 8.1 5.7 0.7 9.2 5.6 0.0 10.6 7.2
HP WinXP SB 0.9 0.3 2.4 2.0 0.0 1.3 0.3 2.7 1.9 0.0 10.6 1.2 1.3 0.3 2.8 2.0 0.0 10.6 1.2
HP WinXP 2x2 3.5 0.5 5.4 3.2 0.0 5.4 0.4 7.3 4.1 0.0 12.4 3.0 5.8 0.6 7.8 5.4 0.0 12.5 3.9
HP WinXP Motu 7.5 1.5 12.2 8.0 3.1 7.8 1.5 11.6 7.0 6.5 12.9 6.5 7.9 1.5 12.6 8.0 8.3 13.2 6.8
T23 Win2k 2x2 4.3 0.6 6.3 3.9 0.0 5.6 0.6 8.4 6.0 0.0 12.6 6.0 6.8 0.5 10.6 7.8 0.0 13.6 4.2
T23 Win2k Motu 7.7 1.3 10.3 5.1 1.5 8.0 1.3 10.6 5.0 5.1 11.2 4.8 7.7 1.2 10.6 5.0 0.9 14.8 8.4
T23 Win2k 4140 2.1 0.8 4.4 3.6 0.0 4.2 0.3 5.1 2.1 0.0 16.0 2.4 3.7 0.3 20.7 18.3 25.7 19.5 5.7

Table 1: Empirical data from various system configurations. We characterize our latency histograms with
the following summary statistics: the average (µ), standard deviation (σ), maximum (m), peak jitter (p),
and the percentage of latencies that lies above 10 ms (≥10). For the burst tests, we characterize the width
histograms by the maximum burst width (mw) and the peak width jitter (pw).

5. CONCLUSION
Although MIDI can indeed perform close to the threshold of
perceptible timing error, it is clear that performance can dif-
fer significantly as a result of system configuration, load, and
MIDI traffic. Previous performance testing did not bring all
of these facts to light. We hope that the survey we have pre-
sented will, in addition to illustrating some common sources
of latency and jitter, encourage researchers using MIDI in in-
teractive software settings to use independent, in-place tools
to test and tune performance.

One of our hopes in developing this more realistic MIDI
test suite is that it will foster active community participa-
tion. Certainly we are not the only ones with this interest—
existing resources such as James Wright’s OpenMuse have
similar goals. Imagine, for example, the benefits of a re-
source where individuals could report and discuss empirical
performance measures for their particular applications and
systems. Such interaction could ultimately lead to a robust
and generally accepted set of useful benchmarks for interac-
tive music applications.
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