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This article pursues the insight that language models naturally enable an intelligent variation operator similar
in spirit to evolutionary crossover. In particular, language models of sufficient scale demonstrate in-context
learning, i.e., they can learn from associations between a small number of input patterns to generate outputs
incorporating such associations (also called few-shot prompting). This ability can be leveraged to form a
simple but powerful variation operator, i.e., to prompt a language model with a few text-based genotypes
(such as code, plain-text sentences, or equations), and to parse its corresponding output as those genotypes’
offspring. The promise of such language model crossover (which is simple to implement and can leverage
many different open source language models) is that it enables a simple mechanism to evolve semantically
rich text representations (with few domain-specific tweaks), and naturally benefits from current progress in
language models. Experiments in this article highlight the versatility of language-model crossover, through
evolving binary bit-strings, sentences, equations, text-to-image prompts, and Python code. The conclusion is
that language model crossover is a flexible and effective method for evolving genomes representable as text.
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Fig. 1. LMX. New candidate solutions are generated by concatenating parents into a prompt, feeding the
prompt through any large pre-trained LLM, and collecting offspring from the output. Such an operator can
be created through very few lines of code. The enormity and breadth of the dataset on which the LLM
was trained, along with its ability to perform in-context learning, enables LMX to generate high-quality
offspring across a broad range of domains. Domains demonstrated in this article include (a) binary strings, (b)
mathematical expressions, (c) English sentences, (d) image generation prompts, and (e) Python code; many
more are possible. When integrated into an optimization loop, LMX serves as a general and effective engine
of text-representation evolution.

1 Introduction
Large language models (LLMs) [Bommasani et al., 2021; Brown et al., 2020] are behind many of
the approaches achieving state-of-the-art results in natural language processing domains, such as
question-answering [Cheng et al., 2021; Fajcik et al., 2021; Lu et al., 2022b], code-generation [Chen
et al., 2021; Li et al., 2022], and few-shot classification [Brown et al., 2020; Schick and Schütze, 2021].
One popular type of LLM is trained on corpora of human-authored text to predict the next token
from previous ones, i.e., autoregressive LLMs (e.g., GPT-3), which at their core model a distribution
of likely output sequences given an input sequence or prompt. In zero-shot prompting, an LLM
generates an output response from a single input query. However, another popular prompting
paradigm is few-shot prompting [Brown et al., 2020], wherein the input to the LLM contains a few
examples of desired input-output behavior (e.g., how to classify a sentence’s sentiment) preceding
a new target input that the model is to classify. In this way, to some extent such LLMs have meta-
learned how to learn a desired task given only a few natural-language examples [Chan et al., 2022;
von Oswald et al., 2023].

One reason this ability is exciting is because it highlights how LLMs can in effect be seen as
powerful pattern-completion engines. Few-shot prompting works because the LLM can “guess the
pattern” behind a few input/output pairs and generalize its behavior to a new target input (provided
at the end of the few-shot prompt). The central insight of this article is that the pattern-completion
ability of few-shot prompting can be leveraged to create a form of intelligent evolutionary crossover
(Figure 1). For example, if three text-based genotypes are drawn from a population and concatenated
into a prompt, an ideal pattern-completion engine would analyze their commonalities and generate
a new (fourth) genotype that qualitatively follows from the same distribution. In effect such an
operator would combine aspects of the input genotypes, and indeed, an experiment in Section 4.1
demonstrates empirically that LLMs enable this with binary strings. Theoretically we also connect
this form of languagemodel crossover (LMX) to estimation of distribution algorithms (EDAs)
[Baluja, 1994; Larranaga, 2002], wherein LMX can be seen as building an implicit probabilistic model
of the input parent genotypes from which to sample a new offspring, through a single forward pass
of the LLM. From the perspective of intelligent pattern-completion, this operator should naturally
improve as LLMs increase in capabilities (which experiments here validate); furthermore, to increase
performance the method can easily leverage the rise of open source domain-specific LLMs that
match a target domain (e.g., LLMs that focus on code, when the target domain is to evolve code),
often with changing only a single line of code to rely on a different hosted model (e.g., through the
HuggingFace model repository [Wolf et al., 2020]).
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The benefit of LMX is that evolution can easily and effectively leverage the semantically rich (and
generic) representation of text, e.g., without having to design domain-specific variation operators.
LMX’s versatility is highlighted in experiments with binary strings, style transfer of plain-text
sentences, symbolic regression of mathematical expressions, generating images through prompts
for a text-to-image model, and generating Python code. The results highlight the potential of the
method to produce quality results across domains, often by leveraging the broad ecosystem of
pre-trained models that can be easily combined in many ways to quantify fitness or diversity, or to
cross modalities (i.e., from text to image). LMX may also synergize with recent LLM-based mutation
techniques [Lehman et al., 2023], and is amenable to similar possibilities such as fine-tuning an
LLM as a way of accelerating search, although we leave these possibilities for future work (see
Section 7).

In short, the main contributions of this article are to introduce LMX, explore its basic prop-
erties, and highlight its versatility through testing it in a variety of domains. We will release an
implementation of LMX and code to recreate the main experiments of the article.

2 Background
This section reviews relevant background on foundationmodels, intelligent variation in evolutionary
computation, and evolution with deep generative models.

2.1 Foundation Models
A recent paradigm in machine learning (ML) is to train increasingly large models on Internet-
scale data, e.g., BERT and GPT-3 on text [Brown et al., 2020; Devlin et al., 2019], or DALL-E and
stable diffusion on captioned images [Ramesh et al., 2021; Rombach et al., 2022]. Such models are
sometimes called foundation models [Bommasani et al., 2021], as they provide a broad foundation
from which they can be specialized to many specific domains (e.g., with supervised fine-tuning (i.e.,
further training on a domain-specific dataset) or prompt-engineering). Foundation models have
enabled a vibrant ecosystem of specialized models [von Werra et al., 2022] that can be combined
in a plug-and-play way (e.g., models that measure sentiment of text [Camacho-Collados et al.,
2022], summarize text [Stiennon et al., 2020], write code [Nijkamp et al., 2023], rank the aesthetics
of images [Deng et al., 2017; Kong et al., 2016; Schuhmann, 2022], and create high-dimensional
embeddings of text or images [Reimers and Gurevych, 2019; Yu et al., 2022]). One contribution of
this article is to demonstrate how evolutionary methods can easily leverage this growing ecosystem
to evolve high-quality artifacts in diverse applications.

One particularly exciting class of foundation models are pre-trained language models (LMs)
that model the distribution of text. While early LMs used Markov chains [Shannon, 2001] or
recurrent neural networks [Graves, 2013], more recently the transformer architecture [Vaswani
et al., 2017] has enabled significant progress in NLP. Let+ be a vocabulary of text tokens, e.g., words
or other atomic pieces of text. Then, + ∗ is the set of strings made up of tokens from + . Given an
input string 0102 . . . 0)in ∈ + ∗, a large autoregressive transformer-based LM (LLM) probabilistically
generates an output string:

0)in+10)in+2 . . . 0)in+)out ∼ LLM(0102 . . . 0)in ), (1)

where 0)in+8 are all sampled autoregressively:

0)in+8 ∼ LLM> (0102 . . . 0)in+8−1) ∀ 8 ∈ [1,)out], (2)

where LLM> is the softmax distribution over + induced by a single forward pass through the
transformer model. The method in this article focuses on one emergent capability of LLMs: the
potential to learn from text examples provided as input to the model when generating an output,
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which is called in-context learning or few-shot prompting [Brown et al., 2020; von Oswald et al.,
2023]. For example, including input-output examples of a text classification task in a prompt will
improve an LLM’s performance at that task. Say, for some input space X and output space Y, we
have ground truth classification examples (G8 , ~8 ) ∼ (X,Y), an LLM, a function q for formatting a
list of examples as a prompt (e.g., by concatenating them with a delimiter), andk for extracting
a prediction from text output (e.g., by splitting on a delimiter). Then, in-context learning with :

examples (:-shot prompting) is successful if

Pr

[
k

(
LLM

(
q

( [
G1, ~1, . . . , G: , ~: , G:+1

] )))
= ~:+1

]
> Pr

[
k

(
LLM

(
q

( [
G1, ~1, G:+1

] )))
= ~:+1

]
> Pr

[
k

(
LLM

(
q

( [
G:+1

] )))
= ~:+1

]
, (3)

i.e., the model is more likely to produce the true target ~:+1 for G:+1 if multiple ground truth pairs
are provided. It is called in-context learning because it fits the standard ML paradigm of using a set
of training data {(G8 , ~8 )}:8=1 to make predictions on hold-out data G:+1. Importantly, performance
at in-context learning improves with model scale [Chan et al., 2022; Wei et al., 2022b], implying
that methods relying upon this capability will benefit from continuing progress in LLM training.
This article highlights how the in-context learning capabilities of autoregressive LLMs (such as the
popular GPT architecture) naturally enable a recombination operator. The next section reviews
existing methods for intelligent variation in evolutionary computation.

2.2 Intelligent Variation Operators
Populations in evolutionary algorithms (EAs) generally evolve through high-performing candi-
date solutions being mutated or recombined to form the next generation. Such variation is critical as
a primary driver of both exploration and exploitation of the search space [De Jong, 2006]. Given the
space of all candidate solutions X, a genetic variation operator 6 is a (usually stochastic) function
that generates a child solution G ∈ X given a set of parent solutions - ⊂ X. Since 6(- ) induces a
distribution over candidates, we can write

G ∼ 6(- ). (4)

If |- | = 1 we call 6 a mutation operator; if |- | > 1 we call 6 a recombination or crossover operator.
A solution G is called a genotype since it is in the space where genetic operators are applied. An
encoding � : X → Y maps a genotype G to a phenotype ~, so that its fitness 5 (~) = 5 (� (G)) can be
evaluated with a fitness function 5 : Y → R. Traditional mutation and crossover operators (such
as one-point crossover or bit-flip mutation) do not explicitly seek to model and exploit regularities
among high-fitness individuals (or do so in an implicit way [Holland, 1992; Meyerson et al., 2022]),
which can cause EAs to be relatively sample-inefficient in some situations when compared to
statistical methods [Turner et al., 2021].

To address this limitation, strategies for generating intelligent variation have been a focus of
much EA research, for example, evolving within the latent space of an ML model [Fontaine and
Nikolaidis, 2021; Gaier et al., 2020; Rakicevic et al., 2021; Schrum et al., 2020], through training
models to mimic mutations [Khalifa et al., 2022; Lehman et al., 2023], or code repair operators that
draw on knowledge about the program’s existing correct behaviors and integrate fault localization
techniques to guide operators toward promising regions of improvement [Le Goues et al., 2011].
Such methods are intelligent in the sense that they autonomously draw on prior knowledge outside
of the scope of the parent genomes in order to better generate promising child solutions.

One particularly popular such strategy is to build probabilistic models of high-performing
individuals or to model elements of the search path taken across recent generations. For example,
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EDA [Baluja, 1994; Larranaga, 2002], covariance matrix adaptation evolution strategy (CMA-
ES) [Hansen and Ostermeier, 2001], and natural evolution strategies (NES) [Wierstra et al.,
2014] build and sample candidate solutions from an explicit probability distribution. While EDAs
estimate the distribution of the solutions that have been sampled, CMA-ES additionally estimates
the steps of the search direction. The LMX operator in this article can be seen similarly as building
a probabilistic model of individuals (here of parents, rather than the whole population), and doing
so implicitly in the forward-pass of the LLM (through in-context learning).

2.3 Evolution with Deep Generative Models
Over the past decade, deep generative models have been explored as a method to aid evolutionary
search (see Table 1). EDA approaches have leveraged autoencoders [Hinton and Salakhutdinov,
2006] to define distributions based on high-performing solutions identified during the search
process. Autoencoders are used either as solution encodings which map evolved genotypes onto a
set of genotypes that align with the learned distribution; or as a mechanism for solution generation,
with new solutions drawn directly from the established distribution.

The advent of large, pre-trained foundation models marks a significant step in this paradigm
and has caused a flurry of exploration. Unlike traditional approaches that necessitate training
models on solutions generated during the search, these advanced models can be directly leveraged,
with distributions defined via strategic prompting. Foundation models, particularly LLMs, bring a
nuanced understanding of grammar and domain-specific patterns, as evidenced by their ability to
provide high-quality responses across a vast array of text inputs. This capability enables search
across more abstract spaces, such as narratives [Bradley et al., 2024a] and high-level programming
languages [Romera-Paredes et al., 2024]. This innovation introduces a novel dimension to search
directionality through “instructed mutation”—a method where instruction prompts guide the
mutation process, offering an unprecedented level of natural-language-based control and specificity.

However, even without instructed mutation, foundation models contain an innate propensity to
generate variation, due to their fundamental capacities as probabilistic pattern completion engines.
The distribution from which new solutions are sampled can still be defined using top performing
solutions from the population—but by providing multiple solutions directly to the model as a
prompt, without explicit instruction that they be modified, and without retraining. The present
work explores this fundamental approach.

3 Approach: LMX
The approach in this article builds from the insight that the objective function used to train many
self-supervised LLMs, i.e., next-token prediction [Brown et al., 2020], naturally lends itself to
creating an evolutionary variation operator, from which EAs that represent genomes as text can be
derived.The reason is that such an objective entails anticipating what comes next from some limited
input context, and if that input consists of a few example genotypes, then the ideal anticipation is
to continue that pattern, i.e., through suggesting a new genotype from the distribution implied by
those examples. In other words, LLMs trained by next-token prediction can be seen as learning
to become general pattern-completion engines. From this lens, as higher-performing LLMs (i.e.,
those with lower prediction loss on a held-out set) are continually developed, their performance as
engines of evolutionary variation should continue to improve. Supporting this idea, when trained
over a large amount of diverse examples, LLMs demonstrate an increasing capability for in-context
learning (i.e., inferring novel associations within the input given at test-time when generating
completions) [Brown et al., 2020; Chan et al., 2022; Wei et al., 2022b].

The variation operator suggested by this insight is (1) simple to implement (i.e., concatenate
a few text-based genotypes into a prompt, run it through an LLM, and extract a new genotype
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Table 1. Evolutionary Recombination with Deep Generative Models

Date Title Model Model Usage Training Data

2014 A Denoising Autoencoder that Guides Stochastic Search [Churchill et al. 2014] DAE Solution Encoding Current Run

2015 Denoising Autoencoders for Fast Combinatorial Black Box Optimization [Probst 2015] DAE Solution Generation Current Run

2018 Learning an Evolvable Genotype-Phenotype Mapping [Moreno et al. 2018]
AE,
DAE

Solution Encoding Previous Runs

2018
Expanding Variational Autoencoders for Learning and Exploiting Latent Representations
in Search Distributions [Garciarena et al. 2018]

VAE Solution Generation Current Run

2019
Estimation of Distribution using Population Queue based Variational Autoencoders
[Bhattacharjee and Gras 2019]

VAE Solution Generation Current Run

2020 Harmless Overfitting: Using Denoising Autoencoders in EDAs [Probst and Rothlauf 2020] DAE Solution Generation Current Run

2020
DAE-GP: Denoising Autoencoder LSTM Networks as Probabilistic Models in Estimation of
Distribution Genetic Programming [Wittenberg et al. 2020]

DAE Solution Generation Current Run

2022
Using Denoising Autoencoder Genetic Programming to Control Exploration and Exploita-
tion in Search [Wittenberg 2022]

DAE Solution Generation Current Run

2022
Evolving through the looking glass: Learning Improved Search Spaces with Variational
Autoencoders [Bentley et al. 2022]

VAE Solution Encoding Previous Runs

2022 Evolution through Large Models [Lehman et al. 2023] LLM Instructed Mutation
Foundation Model

+ Past Runs

2023
Language Model Crossover: Variation through Few-Shot Prompting (arxiv) [Meyerson et al.
2023]

LLM Solution Generation Foundation Model

2023
Evoprompting: Language Models for Code-Level Neural Architecture Search [Chen et al.
2023]

LLM
Solution Generation,
Instructed Mutation

Foundation Model
+ Current Run

2023
MarioGPT: Open-Ended Text2Level Generation through Large Language Models
[Sudhakaran et al. 2023]

LLM Instructed Mutation Foundation Model

2023
Wizardlm: Empowering Large Language Models to Follow Complex Instructions [Xu et al.
2024]

LLM Instructed Mutation Foundation Model

2023 Fully Autonomous Programming with Large Language Models [Liventsev et al. 2023] LLM Instructed Mutation Foundation Model

2023
LLMatic: Neural Architecture Search via Large Language Models andQuality-Diversity
Optimization [Nasir et al. 2024]

LLM Instructed Mutation Foundation Model

2023
Promptbreeder: Self-Referential Self-Improvement Via Prompt Evolution [Fernando et al.
2023]

LLM
Solution Generation,
Instructed Mutation

Foundation Model

2023
Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt
Optimizers [Guo et al. 2024]

LLM Instructed Mutation Foundation Model

2023 Large Language Models as Optimizers [Yang et al. 2024] LLM Instructed Mutation Foundation Model

2023 Eureka: Human-Level Reward Design via Coding Large Language Models [Ma et al. 2024] LLM Instructed Mutation Foundation Model

2023 Large Language Model for Multi-Objective Evolutionary Optimization [Liu et al. 2023a] LLM Instructed Mutation Foundation Model

2023 Algorithm Evolution using Large Language Models [Liu et al. 2023b] LLM Instructed Mutation Foundation Model

2023
Mathematical Discoveries From Program Search with Large Language Models [Romera-
Paredes et al. 2024]

LLM Solution Generation Foundation Model

This table characterizes, in chronological order, the use of generative machine learning models in evolutionary recombination. Models include Autoencoders
(Green), Denoising Autoencoders (Blue), Variational Autoencoders (Red), and Large Language Models (Orange). Model Usage encompasses Solution Encoding
(Purple)—where models serve as a mapping from genotype to phenotype, Solution Generation (Brown)—where genotypes are directly sampled from the model,
and Instructed Mutation (Yellow)—mutation guided by predefined prompts. Training Data details the data source for model training: Current Run (Darker Blue)
indicates models trained on data from the current optimization run, Previous Runs (Light Blue) on data from past runs, Foundation Model (Dark Green) utilizes a
large, general-purpose pre-trained model, and Foundation Model + Current Run (Gold) denotes a pre-trained model fine-tuned with current run (or past run) results.
The burst of approaches using LLMs and evolution in 2023 highlights a shift towards pre-existing models and prompting, along with a surge of interest in both the
machine learning and evolutionary algorithms communities.

from its output; we release code implementing it accompanying this article), (2) relatively domain-
independent (i.e., in theory it should be capable of generating meaningful variation for any text
representation that has moderate support in the training set, which often encompasses an enormous
crawl of the Internet), and (3) should suggest increasingly semantically sophisticated variation with
more capable LLMs (i.e., an LLM that is generally better at predicting the next token in text will

ACM Transactions on Evolutionary Learning and Optimization, Vol. 4, No. 4, Article 27. Publication date: November 2024.



Language Model Crossover: Variation through Few-Shot Prompting 27:7

generate outputs in a manner that implies that it has a deeper semantic understanding of the input
text). The experiments that follow add supporting evidence to these claims.

Figure 1 shows from a high level how LMX enables creating a domain-independent EA for text
representations. The basic idea is that given a set of a few text-based genotypes (or bootstrapping
from a single genotype using prompt-based mutation [Lehman et al., 2023]), an initial population
can be generated through LMX. Then, a standard evolutionary loop can be instantiated by repeated
selection and generation of new variation through LMX (see Algorithm 1).

Algorithm 1: Evolutionary Algorithm using LMX. Lines 7-9 are the essence of LMX
1: Given LLM, population size =, parents per crossover : , fitness function 5

2: Initialize population % with random text-based individuals ⊲ See experiments for examples
3: while not done evolving do
4: %new = ∅ ⊲ Initialize new candidate set
5: while |%new | < = do ⊲ Generate new candidates in loop
6: G1, . . . , G: ← randomly choose : individuals in % ⊲ Select parents
7: prompt← G1\n G2 \n . . . \n G: ⊲ Concatenate parents, e.g., separated by newlines
8: output← LLM(prompt) ⊲ Sample output text from LLM given prompt
9: children← extract valid candidates from output ⊲ E.g., split output on newlines

10: %new ← %new ∪ children ⊲ Add children to new candidate set
11: end while
12: % ← % ∪ %new ⊲ Add new candidates to population
13: % ← refine % down to = individuals using 5 ⊲ E.g., use tournament selection to decide

which to delete
14: end while

Formally, the approach is grounded in a direct generalization of Equation (3), namely, that
providing a prompt of examples from a distribution can condition the LLM to generate further high-
probability examples from that distribution. So, if we have examples G8 ∼ X, then

Pr

[
k

(
LLM

(
q

( [
G1, . . . , G:

] ))) ���� X] > Pr

[
k

(
LLM

(
q

( [
G1
] ))) ���� X] > Pr

[
k

(
LLM

(
q

( [] ))) ���� X] .
(5)

Equation (5) is applied to the evolutionary context by letting G1, . . . , G: be a set of parent genotypes
and X a distribution of (relatively) high-performing genotypes. So, Lines 7–9 of Algorithm 1 are an
instance of the general formulation of LMX:

LMX(G1, . . . , G: ) = k

(
LLM

(
q
(
[G1, . . . , G: ]

) ))
. (6)

This connection to :-shot prompting suggests that, at least in the case of a pre-trained LLM,
recombination or crossover (i.e., : > 1) will be more effective than mutation (: = 1) or random
sampling (: = 0). The resulting genetic operator is intelligent in the sense that, given a set of parents,
it uses in-context learning (powered by the knowledge encoded in the LLM) to build a model of
high-quality solutions, instead of directly searching in low-level genotype space. Note that, since
LMX does not programmatically recombine parent components, but rather samples from a general
distribution induced by an LLM, children genotypes may include components not found in their
parents. This inherent variation means that, unlike in classical genetic algorithms (GAs), it is not
necessary to include a distinct mutation step in addition to crossover.
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Table 2. Overview of Experiments

Section Domain Genotype Phenotype LLM

4.1 Binary Strings Text Binary strings Pythia-70M to 6.9B (eight models)
4.2 Symbolic Regression Text Math expressions Pythia-1.4B, GALACTICA-1.3B
4.3 Modifying Sentiment Text Text Pythia-1.4B
4.4 Image Generation Text Image Pythia-2.8B
4.5 Sodaracers Text Python functions CodeGen-350M, 2B, 6B

In all domains, the genotype is text, since text is the substrate LMX evolves. In all domains except Modifying
Sentiment, this text is converted to another form (phenotype) for evaluation. Section 4.1 evaluates the effect of
LLM size within the Pythia family; Sections 4.3 and 4.4 use LLMs within that family; Sections 4.2 and 4.5 use
LLMs that are more specialized to the domain. Taken together, the experiments demonstrate that LMX is a
generic method of generating variation for evolution.

In the experiments that follow, we use simple GAs (although one experiment instantiates a
simple quality diversity (QD) algorithm). In theory, however, LMX can be generically applied
to most EAs, e.g., multi-objective EAs [Coello Coello et al., 2020; Deb et al., 2002], evolutionary
strategies [Auger and Hansen, 2011; Beyer and Schwefel, 2002], or in support of open-ended
evolution [Wang et al., 2019a], but simply swapping it in as the genetic variation operator. How or
if LMX can be applied in EAs that explicitly leverage probabilistic models of genotypes (e.g., EDAs
[Baluja, 1994; Larranaga, 2002], NES [Wierstra et al., 2014], or CMA-ES [Hansen, 2016; Hansen and
Ostermeier, 2001]) is an interesting question for future research (Section 7), although LMX does
bear a theoretical relationship to EDAs, as explored in Section 5.

4 Experiments
This section demonstrates the application of LMX to five domains, to investigate the basic properties
of the method and illustrate the breadth of its applicability. Table 2 gives an overview of the
experiments. Section 4.1 applies LMX to a toy domain to confirm the basic properties of the method;
Section 4.2 applies LMX to symbolic regression, to show how evolving text representations with
LMX can be effective in domains not classically represented as text; Section 4.3 applies LMX in its
most natural setting: evolving well-formed natural-language sentences, while also showing how
the method can be naturally integrated with other NLP components and QD algorithms; Section 4.4
applies LMX to evolving text prompts for image generation, a domain that further highlights the
plug-and-play capability of LMX with other deep generative models, while enabling a comparison
to zero-shot generation and where naive evolution of text is a strong baseline (due to the fact
that text-to-image models are fairly agnostic to grammatical correctness); and, finally, Section 4.5
shows how LMX can be applied to generating Python code, clearly situating the method across
this intersection of the genetic programming and LLM code-generation communities. Source code
for experiments in each domain is publicly available.1

4.1 Illustrative Example: Binary Strings
As an instructive example to explore the properties of LMX, in this section this operator is applied
to generate variation in the space of binary strings (e.g., composed of text strings such as “011000”);
first, to see whether LMX can generate meaningful and heritable variation (i.e., to create new valid
binary strings from old ones, and that the new ones resemble the old ones); and then, to see whether

1https://github.com/jal278/lmx
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Fig. 2. The effect on LMX from varying the number of parents and LLM size. (a) As the number of parent
genotypes input into the LLM is increased, the percent of valid offspring approaches 100%. The number of
novel genotypes generated on average from 20 applications of LMX (which at three offspring per application
can result in at most 60 offspring) to a random set of parents reaches its maximum at four parents (while five
parents tend to more often produce offspring that duplicate one of the parents exactly). The conclusion is
that LMX effectively generates variation from as few as three input genotypes. (b) As the parameter count
(i.e., number of weights trained with SGD) of the LLM is increased in the length-9 binary string domain, the
percent of valid offspring and number of novel offspring (out of at most 60) also increase. The number of
parents is fixed to 3 for this experiment. Note m indicates millions of parameters, while b indicates billions.
The conclusion is that in this domain LMX becomes more effective with larger LLMs.

LMX can successfully drive evolution of binary strings, in this case to maximize the number of 1s
(i.e., the OneMax problem, where the fitness function is the number of 1s in a valid binary string).

A first question is whether a pre-trained LLM (here an 800-million parameter Pythia model
[Biderman et al., 2023]), given only a few examples of such genomes, can generate meaningful
variation (i.e., without any hard-coded knowledge about the representation). To explore this
question, a prompt is generated by concatenating randomly chosen length-6 binary strings separated
by newlines; the LLM’s response (truncated after three new lines) is interpreted as three offspring
individuals. Figure 2(a) shows how often such a prompt will generate valid individuals (i.e., strings
of length 6 composed of 1s and 0s) as a function of number of examples in the prompt, and how
many novel offspring (i.e., the size of the set of individuals generated that are distinct from the
parents) are generated on average from 20 trials of LMX crossover on the same set of parents
(averaged across 20 randomly sampled parent sets). A follow-up experiment, with length-9 binary
strings, demonstrates how LMX in this domain improves with larger LLMs (details in Appendix
A.1; results shown in Figure 2(b)). The conclusion is that indeed, LMX can reliably generate novel,
valid offspring (from as few as three examples).

A second question is whether LMX can create heritable variation. Evolution requires there to
be meaningful information transmitted from parents to offspring. One way to explore this is to
measure whether a prompt composed of highly related binary strings produces novel but nearby
offspring (e.g., as measured by edit distance). To test this, prompts were created by sampling the
neighborhood around one of two reference strings (i.e., single-step mutations from either the all-
ones or all-zeros string), and offspring were generated from the LLM. Indeed, offspring generated
from the neighborhood of the all-ones string had significantly higher (Mann-Whitney U test; p
< 0.001) hamming distance from the all-zeros string than the all-ones string (and vice versa; see
Figure 3(a)).

A final instructive question is whether an evolutionary process can be successfully driven
by LMX. To explore this, we test LMX in OneMax, i.e., evolving the all-1s string, in a simple
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(a) (b)

Fig. 3. Heritability and convergence of LMX on binary strings. (a) The histogram shows the distribution
of how far offspring are from the all 1s string, depending on if parents are taken in the neighborhood of
the all-1s or all-0s string. As expected these distributions are significantly different. The conclusion is that
LMX indeed produces heritable variation. (b) Convergence results (median and IQR) for a simple GA using
either LMX or one-point crossover. Though fewer solutions converge on the optima using LMX than classical
recombination (16/20 vs. 20/20), mean values are higher (Mann-Whitney p = 0.002). Though not as efficient as
a domain-specific operator, it is clear that LMX can indeed drive an evolutionary process.

GA. A small population (10 individuals) of length 10 bit strings is initialized randomly. At each
generation the top five solutions, plus the elite solution from any previous generations, are chosen
as parents for recombination to form the next population. LMX recombination is compared to
recombination via one-point crossover with a 10% chance of a bit flip mutation. Figure 3(b) shows
the median max/mean fitness values over 20 runs of each, clearly illustrating LMX’s ability to drive
an evolutionary process. Overall, these experiments highlight basic properties of LMX, showing how
it can evolve string-based representations without domain-specific operators. However, because of
its simple phenotype space, bit string optimization is a domain where simple classical operators can
work quite well [Doerr and Auger, 2011]. Sections 4.2–4.5 focus on domains with more complex
phenotypes.

4.2 Symbolic Regression
To demonstrate LMX’s potential in a more challenging task, this section applies the algorithm to
symbolic regression, a key domain of interest for genetic programming [Langdon and Poli, 2013;
McDermott et al., 2012; Orzechowski et al., 2018; Schmidt and Lipson, 2009], and more recently for
the larger ML community [Biggio et al., 2021; Kamienny et al., 2022; La Cava et al., 2021; Petersen
et al., 2021]. The goal of symbolic regression is to discover a mathematical expression that models a
dataset accurately, while also being as compact as possible [La Cava et al., 2021]. Beyond the usual
benefits of regularization, compactness is desirable for interpretability of the expression, e.g., to
enable scientific insights [Johnson et al., 2019; Schmidt and Lipson, 2009; Udrescu and Tegmark,
2020; Wang et al., 2019b].

Symbolic regression is challenging to tackle with hand-designed operators, due to non-locality
and discontinuities in the space of expressions. Existing symbolic regression approaches use
carefully developed representations, genetic operators, and auxiliary methods like gradient-based
or convex coefficient optimization [Chen et al., 2015; Kommenda et al., 2020; Tohme et al., 2022]
to construct the right kind of search process for reaching high-performing expressions that look
like the kinds of expressions the experimenter is interested in. With LMX, these challenges can be
avoided by simply feeding parent expressions into the LM. Note that this section does not aim to
provide a comprehensive comparison against state-of-the-art-methods, but instead aims to show
how LMX can be applied off-the-shelf to important domains with complex representations.
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4.2.1 Experimental Setup. The LLM for this experiment was the 1.3B-parameter version of
GALACTICA [Taylor et al., 2022]. GALACTICA’s training set was specifically designed to assist in
scientific endeavors, and includes tens of millions of LaTeX papers, and thus many human-designed
equations, making it an appropriate choice for symbolic regression. This choice also highlights how
different off-the-shelf LLMs can be selected for LMX based on properties of the problem.

When the ground truth expression for symbolic regression is known, we run the risk that the
expression is already in the dataset used to train the LLM. To avoid such test-set contamination, we
consider a “black-box” problem (which has no known ground truth expression) from the established
SRBench testbed [La Cava et al., 2021]. The “banana” problem was chosen because there is a clear
Pareto front across existing methods, making it easy to see how LMX compares. This black-box
problem was originally derived from a popular ML benchmark in the KEEL dataset repository
[Derrac et al., 2015]; it has 5,300 samples and two input features G1, G2.

In this experiment, crossover prompts beganwith the string “Below are 10 expressions that
approximate the dataset:\n” followed by seven randomly selected parents from the population
separated by newlines (see Figure 4 for examples). Each subsequent line generated by the model
was interpreted as a possible offspring, interpreted as Python code, and simplified using sympy (as
in the SRBench comparisons [La Cava et al., 2021]). Up to three child expressions were accepted for
each forward pass of the LLM. Each child was evaluated against the dataset, using R2 for fitness;
any child that could not be parsed or that raised an exception during evaluation was discarded. The
same compactness/complexity measure was used as in SRBench, i.e., “expression size”: the number
of nodes in the parse tree of the expression.

The initial population was constructed from 113 popular symbolic regression benchmarks.2
The idea is that these benchmark expressions capture the distribution of the kinds of expressions
humans want symbolic regression to discover, thereby avoiding the need to generate random
expressions from scratch. To give each benchmark expression a greater chance of initial success, the
initial population consisted of 1,000 candidates, each generated by randomly selecting a benchmark
expression and then randomly mapping its input variables G ′1, G

′
2, . . . to the input variables G1, G2

in the test problem. Thereafter, the population size was set to 50. Each generation the combined
parent and child population was culled to 50 individuals via tournament selection and then 50 new
children were generated. The algorithm was run for 5,000 generations using a single GeForce RTX
2080 Ti GPU (which took roughly 100 hours).

To contextualize the convergence behavior of LMX, gplearn (one of the most popular symbolic
regression tools3) was run with hyper-parameters previously used for SRBench [La Cava et al.,
2021]; as an ablation to evaluate the benefit of using an LLM specialized for scientific work, LMX
was also run with a 1.4-billion parameter Pythia model4; as an ablation to assess the impact of
initialization vs. LMX itself, a version of gplearn was run with the same population initialization as
LMX; this initialization uses around 100 lines of complex custom code to translate the benchmark
expressions to the format required by gplearn.5 Ten independent runs were performed for each
experimental setup. See Appendix B for additional experimental details.

4.2.2 Results. LMX produces competitive results, generating fit and parsimonious expressions.
Figure 5 shows how fitness evolves over generations for one run of LMX, with the expression of

2The set of benchmark expressions was copied from https://github.com/brendenpetersen/deep-symbolic-optimization/blob/
master/dso/dso/task/regression/benchmarks.csv. Duplicate expressions were removed.
3https://gplearn.readthedocs.io/en/stable/
4By simply replacing “facebook/galactica-1.3b” with “EleutherAI/pythia-1.4b-deduped” when loading the model
from Hugging Face.
5See generate_random_expression.py and gplearn_baselines.py in the accompanying code.
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Fig. 4. Four examples of LMX for symbolic regression. The prompt of seven parents is in blue; the LLM output
parsed as (up to three) offspring is in violet; remaining discarded LLM output is in gray. In all cases, children
exhibit meaningful variations of parents.

highest fitness so far plotted at several generations to illustrate the kinds of improvements evolution
finds. Interestingly, the method finds parsimonious expressions even though there is no explicit
drive toward parsimony in the algorithm. An implicit drive toward parsimony is enforced by the
maximum text size the model processes, which in this experiment was set to 500 tokens; prompts
longer than this cannot produce offspring. Future work could investigate the effects of tuning
this parameter or developing other methods for incorporating explicit drives toward parsimony
(Section 7). Beyond discovering a useful algebraic scaffolding for the problem, LMX tunes constants
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Fig. 5. Example convergence trajectory. Fitness over time for a single run of LMX (GALACTICA) on the
SRBench black-box “banana” problem [La Cava et al., 2021]. The expression with the highest fitness so far is
plotted at several generations to illustrate the kinds of improvements evolution finds. Evolution settles on a

core functional skeleton relatively quickly (i.e., 214−22G
23
1 −24G

25
2 cos(G1 + 26G2 + 27), with G1, G2 input variables

and 28 constants), after which it tunes constants to a surprising specificity, while simultaneously tweaking
and augmenting the skeleton. Even after the process appears to have converged, around generation 3,000 it
discovers innovations leading to further substantial improvements. This late boost highlights the ability of
the LLM to be an engine of interesting and valuable hypotheses in mathematical/numerical spaces.

(a) (b) (c)

Fig. 6. Convergence comparison and LLM ablation. (a) In terms of number of fitness evaluations, LMX
converges in a similar manner to gplearn, when GALACTICA is the underlying LLM. As an ablation, when
Pythia is the LLM, performance is not as strong. This result highlights the value of being able to swap in
different LLMs depending on the domain. (Line is median over 10 independent runs, shading is IQR.) (b) LMX
avoids model bloat as it incrementally improves fitness, thereby satisfying a key desirable property for SR. (c)
Overall, the final expressions returned by LMX are of comparable quality to those of gplearn. The conclusion
is that the general LMX approach can yield high-quality solutions even in highly specialized domains like SR.

to a surprising degree, indicating that the method is capable of continuous optimization, even
though LLMs operate in a space of discrete tokens; this is an interesting ability that could also be
further explored in future work (Section 7).

Figure 6 shows that LMX (using the GALACTICA LLM) achieves overall higher fitness and
lower expression size than gplearn, and the choice of LLM appears to have a substantial impact,
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with the Pythia runs falling short of the others. This result highlights the value in being able to
easily drop in a particular LLM that could be well-suited to a given domain. Figure 6 also shows
that the customized version of gplearn initialized in the same way as LMX does not improve over
the standard gplearn. This result reinforces the idea that in classical GP methods the kinds of
expressions that are easy to evolve may not be the kinds humans are most interested in, while LMX
thrives in this space since the LLM is naturally familiar with human-designed expressions due to
its training data. This bias toward human-designed expressions is also a natural bias against model
bloat, since humans strive to design compact expressions.

Figure 7 shows that the performance of LMX on this problem is competitive with state-of-the-art
methods [La Cava et al., 2021], settling at an intermediate point along the Pareto front. However,
unlike these other methods, which carefully consider model representations, genetic operators,
distributions of synthetic functions, bloat, multiple objectives, and so on, we simply ask an off-the-
shelf LM to be the generator in a minimal evolutionary loop. Note that the claim here is not that
LMX is better than these existing methods, but simply that it is able to evolve reasonable solutions.
In particular, the comparison methods all used a fixed amount of CPU compute, while LMX uses
GPU (see Section 6 for discussion of this distinction). That said, the results clearly show the ability
of LMX, with little domain-specific tuning and an unsophisticated optimization loop, to nonetheless
optimize symbolic expressions in an intuitive and desirable way.

4.3 Modifying Sentence Sentiment

Fig. 7. Comparison to published results. LMX performs
comparably to previously published results from state-
of-the-art SR methods [La Cava et al., 2021], falling on
the Pareto front for the “banana” problem, suggesting
that it is a promising approach to symbolic regression.
Each point is a median across the same 10 train/test
splits.

LMX is next applied to evolve plain-text Eng-
lish sentences. While LMX could be applied in
many ways to evolve sentences, the focus here
is a form of natural language style transfer [Jin
et al., 2022], i.e., to translate an input into a
new style while maintaining as much as possi-
ble the spirit of the original. Such an application
can be important in optimizing how ideas are
communicated amongst humans. For example,
one may want to communicate specific content
but in a style maximally amenable for a tar-
get recipient. One implication of such a system
would be to minimize the chance of costly mis-
understandings from unintended or ambiguous
tone in text. This goal defines an optimization
problem over text. In this proof-of-concept ex-
periment, the task is to take a seed sentence,
and maximally change its sentiment (i.e., how
positive the sentence is) with minimal change
to the sentence itself.

To do so, a simple QD EA [Lehman and
Stanley, 2011b; Mouret and Clune, 2015] is ap-
plied that measures quality as maximizing the
sentiment of a sentence and measures diver-
sity as distance from the seed sentence. In
particular, sentiment is measured through the
“cardiffnlp/twitter-roberta-base-sentiment-latest” model hosted on HuggingFace, which is part
of the TweetNLP project [Camacho-Collados et al., 2022]; the network takes in a sentence, and
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Fig. 8. Modifying Simpsons quote sentiment. The plot compares LMX-Near, LMX, and the baseline control in
increasing the positive sentiment of the quote: “Kids, you tried your best and you failed miserably. The lesson
is, never try.” LMX and LMX-Near do not perform significantly differently, but both significantly outperform
the control. Example sentences of such runs are shown in Appendix C.1.

outputs classification probabilities for whether the sentence is positive, negative, or neutral. The
experiments focus on using the probability of a positive sentiment as the fitness function (although
see Appendix C for results with negative sentiment as fitness). For measuring distance from the
seed sentence, a separate neural network generates a 384-dimensional embedding of a sentence (in
particular the “sentence-transformers/all-MiniLM-L6-v2” model, from the sentence transformer
project [Reimers and Gurevych, 2019]). Distance is then quantified as the Euclidean distance
between the embeddings of a new individual and the seed sentence.

For the QD algorithm, we use MAP-Elites [Mouret and Clune, 2015] with a 1D map (with 30
niches, spanning a distance of 0 to a distance of 1.5 from the seed sentence in the embedding space;
at 0 distance the sentences are exactly the same, while at a distance of 1.5 no words may be shared).
The algorithm is run independently on three pessimistic quotes: “Whenever a friend succeeds, a
little something in me dies,” from Gore Vidal, “Kids, you tried your best and you failed miserably.
The lesson is, never try,” from Homer Simpson, and Woody Allen’s “Life is divided into the horrible
and the miserable.” Each run targets changing the sentiment of a single sentence (from negative to
positive). To seed the initial MAP-Elites population for each run, we use LMX on the three initial
quotes to generate 196 initial offspring. From there onward, offspring for MAP-Elites are generated
from LMX by one of two strategies for sampling individuals from the map: (1) randomly sampling
three elites from the map (LMX), or (2) probabilistically selecting three elites from nearby cells
(LMX-Near; the motivation is that nearby elites will generate more focused variation). MAP-Elites
runs consist of 2,500 evaluations each; to confirm that the evolutionary process generates quality
solutions beyond the direct generative ability of the LLM, a baseline control is also tested that
generates 2,500 offspring only from the initial 3 seed sentences. Ten runs were conducted for each
combination of sentence and method; each run took on the order of minutes on a Google Colab
notebook.

Quantitatively, both LMX-Near and LMX achieved higher QD scores (sum of the fitnesses of
all niches in the map) than the control for all three quotes (Mann-Whitney U test; p < 1e − 5),
and were always able to discover high-sentiment sentences. Interestingly, LMX-Near and LMX
performed significantly differently only for the Gore Vidal quote (LMX-Near produced higher final
QD-scores; Mann-Whitney U test; p < 0.05). Future work is thus needed to determine whether
there exist methods for robustly choosing parents for LMX more effectively (Section 7). QD score
plots for the Homer Simpson quote are shown in Figure 8, and plots for the other quotes (and
representative heatmaps of final MAP-Elites maps) are shown in Appendix C.
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Fig. 9. Example Pareto front from improving positivity of a negative quote. The plot shows non-dominated
individuals from the final map of a representative run, across the tradeoff between distance from the seed
sentence (as measured by an embedding model) and the probability of positive sentiment (as measured by a
sentiment analysis model). The full table of final sentences is shown in Appendix C.

Qualitatively, evolution is generally able to find intuitive tradeoffs between sentiment and
distance from the original sentence. For example, Figure 9 shows the final map of elites from a
representative run on the Homer Simpson quote (with LMX-Near), with some highlighted sentences.
At sufficient distance from the original sentence, evolution often produces repetitive, unrelated
text: e.g., “You are the best that ever happened to me! You are the best that ever happened to me!
You are the best that ever happened to me!” Also, sometimes the method produces incoherent or
grammatically flawed sentences, e.g., “you tried your best and you failed. The lesson is, you can
never stop trying. Kids, you tried your best and you.” Optimization pressure for coherence (i.e., to
maintain high log-probability under an LLM), or better/larger sentiment models, might address
these problems, as discussed in Section 7. The conclusion is that LMX can be used to discover
solutions for natural language tasks like text style transfer; beyond sentiment other styles could be
explored by using different NLP models as fitness functions, e.g., emotion-recognition NLP models
[Nandwani and Verma, 2021].

4.4 Evolving Stable Diffusion Images
This section explores the application of LMX to another creative domain: evolving prompts for
generative text-to-image models. Stable Diffusion6 is a publicly available latent diffusion model
[Rombach et al., 2022] that supports CLIP-guided [Radford et al., 2021] text-to-image synthesis.
Since Stable Diffusion’s release, artists, researchers, and hobbyists have developed prompting
practices, swapping tips for constructing text prompts to produce desired outputs [Oppenlaender,
2023]. For a human with a desired output, discovering an effective prompt defines an optimization
problem over text.The research question here is whether LMX can effectively evolve Stable Diffusion
prompts. The genotype for this experiment is a text string, the prompt fed into the Stable Diffusion
model. Beyond allowing us to investigate how LMX interacts with other generative models, this
domain enables comparison to two natural baselines: (1) classical one-point crossover and (2)
zero-shot generation. (1) In contrast to other domains in this article, even though the genotype
is text, text-to-image models tend to be quite robust to grammatical errors and nonsense, so a
one-point crossover that produces a mangled bag-of-words is a strong baseline. (2) If we have
a particular criteria for an image in mind, we can simply prompt the LLM directly to produce a
prompt for such an image, i.e., without providing any example (parent) prompts; since there are no
examples, this is called zero-shot.

6https://github.com/CompVis/stable-diffusion
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(a) (b)

Fig. 10. Image generation results. (a) Performance aggregated (mean (M) and SE) over nine runs (three
seeds for each color for each method; normalized to [0, 1] based on the min and max fitness for each seed)
shows that LMX substantially outperforms the alternatives. One-point crossover is a strong baseline, with
performance statistically similar to the LMX—No Header ablation. The zero-shot baseline quickly stagnates,
as it is unable to iteratively refine its initial solutions; even Human Random solutions eventually outperform
it, as they have greater diversity. (b) The highest-fitness prompts and corresponding images of LMX for each
color all include the word “background,” but vary in the length and detailed content, highlighting LMX’s
ability to discover diverse, non-obvious solutions.

For all setups, the initial population is seeded by randomly choosing from a set of 80,000 human-
designed Stable Diffusion prompts that were scraped from lexica.art.7 The phenotype is the image
generated by feeding a given prompt to Stable Diffusion. We make Stable Diffusion deterministic by
reseedingwith a fixed PRNG seed before each image is generated, so a given prompt always produces
the same image. The EA is the same as in Section 4.2; experimental details are in Appendix D. Three
interpretable fitness functions are explored, maximizing respectively the “redness,” “greenness,” and
“blueness” of an image. Redness is measured by excess red : the sum of the red channel of an RGB
image, minus half the sum of the other two channels (' − 0.5� − 0.5�). Excess green and excess blue
are defined analogously. These functions are easy to calculate, correspond roughly to perceived
image color (e.g., they are well studied in agricultural image processing [Meyer et al., 1999]), and
provide a proof-of-concept where performance can be visually verified at a glance. Three random
seeds are selected to initialize the population for each color, giving a total of nine runs per method.
Each run uses a population size of 50 for 100 generations, for a total of 5,000 evaluations.

Given two parent prompts, the one-point crossover baseline splits the prompts on whitespace
and chooses crossover points uniformly at random. LMX prompts consist of the header “List of
text-to-image prompts for generating the most <color> image possible:” followed by lines “Prompt:
<parent>” and finally an empty “Prompt:” for the LLM to fill in. The zero-shot baseline is the
same, but with no parent prompts. Two additional comparisons were also run: (1) LMX without the
header, to ablate the impact of removing this basic knowledge about the problem, and (2) random
human-designed prompts from the initial dataset, setting a baseline for the fitness we can expect
without any generative or evolutionary process.

Figure 10(a) shows performance aggregated over nine runs (three seeds for each color for each
method; normalized to [0, 1] based on the min and max fitness for each each seed; M and SE
shown) shows that LMX substantially outperforms the alternatives. One-point crossover is a strong
baseline, with performance statistically similar to the “no header” ablation, supporting the idea
that the ability to naturally incorporate natural language problem specifications is a key advantage
of LMX over classical EAs. The zero-shot baseline quickly stagnates, as it is unable to iteratively
refine its initial solutions; even randomly selected human prompts eventually outperform it, as
7https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
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they have greater diversity; both these baselines far underperform the evolutionary methods. So,
overall, it is the combination of evolution with the native linguistic capacity of LLMs that makes
LMX excel. Figure 10(b) shows the highest-fitness prompts and corresponding images of LMX for
each color. All three images have clearly optimized for the target color. All three prompts include
the word “background,” but vary in the length and kind of detailed content, highlighting LMX’s
ability to discover diverse, non-obvious solutions. The conclusion is that LMX can enable sensible
evolution of images.

4.5 LMX with Python Sodaracers
Finally, to explore whether LMX can generate variation in code, we apply LMX to evolving Python
programs in the Sodarace environment from Lehman et al. [2023], which also explored evolving
Python programs with LLMs (we leverage the OpenELM implementation of Sodarace [Bradley
et al., 2024b]). Sodarace is a 2D simulation of robots with arbitrary morphology constructed from
Python functions (the genotype) which output a dictionary specifying joints and muscles, and
how they are connected. A Sodaracer robot is instantiated from this dictionary and placed in the
environment, and the distance traveled by the robot is used as our fitness function.

We evolve these programs with MAP-Elites [Mouret and Clune, 2015], using the distance traveled
by the generated Sodaracers in a simulation as the fitness and the morphology of the Sodaracer
(height, width, and mass) as the dimensions of the behavior space (as in Lehman et al. [2023]). We
explore the effect on evolution from varying the number of parents that LMX uses to generate
offspring (from one to three parents).

Seven pre-existing Sodarace programs were chosen as seeds (details in Appendix E). To initialize
the population for evolution, LMX was prompted across combinations of these seeds as parents.
We randomize the order of seeds for each application of LMX, to control for variance in results
from the order of programs in the prompt. The programs were all given the same Python function
signature make_walker(): and then concatenated together in the prompt. Note that we begin
each completion with this function signature to improve performance (experiments where the
LLM prompt did not end with the function signature performed worse; see Appendix E). The LLM
output is then interpreted as a potential offspring Python program to be evaluated in the Sodarace
environment.

During evolution steps, we use the same procedure, but randomly select populated niches in the
map to select from to build the prompt (as many niches are sampled as parents for each separate
treatment), and choose the fittest individual in each niche. We experiment with three different-sized
LLMs from the Salesforce CodeGen suite [Nijkamp et al., 2023], a set of models trained on a large
dataset of code in many languages, including Python.

We perform 10,000 evolutionary iterations (corresponding to 10,000 outputs from the LM, not all
of which are valid programs) using 500 initialization iterations. We evaluate the performance of
each experimental treatment by computing the percentage of valid programs, number of niches
filled at the end of evolution, and the QD score at the end of evolution.

The results from these experiments are shown in Figure 11, showing that as the number of
parents in the prompt increases, the diversity of offspring generally increases, as measured by the
number of niches filled and the QD score. (This effect is even more dramatic in the experiments
where the LLM prompt did not end with the function signature—A single parent yields no valid
offspring (see Figure E1).)

Furthermore, a significant proportion of generated offspring are valid Sodaracers (roughly 30%
with the 6B model), highlighting the potential for evolution. Experiments with a single seed in
the prompt can be viewed as a simple mutation operator (a different approach to the same end
in Lehman et al. [2023]). There is a clear trend in model size, showing that the 6B model can
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Fig. 11. Sodaracer results. We show the results for varying numbers of parents in the LLM prompt and across
LLM scale. (Left) Number of niches filled in MAP-Elites. (Center) QD scores (sum of the fitnesses of all niches
in the map). (Right) Validation rate (%) for the generated Sodaracers. LMX generally benefits from more
examples in its prompt, is able to produce reasonable variation, and often creates valid Sodarace mutations,
highlighting its promise for evolving code.

create higher fitness and more diverse Sodaracers, along with a slight trend toward an improved
proportion of valid programs with model scale. These results therefore demonstrate the promise of
LMX for evolving non-trivial Python code.

5 What Makes LMX Effective?
The breadth of experiments in Section 4 shows how LMX can serve as a simple and general method
for evolution across a range of domains. This section presents some perspectives on where the
effectiveness of LMX could come from, including its connection to EDAs and how it could serve as
a starting point for more powerful future algorithms.

5.1 Connection to EDAs
An EDA constructs an explicit probabilistic distribution � fit to the parent set {G1, . . . , G" }, and
samples child solutions G from � [Hauschild and Pelikan, 2011; Larrañaga and Lozano, 2001]. In
contrast, a standard GA generates children by sampling from an implicit conditional probability
distribution ?6 (G | [G1, . . . , G" ]) induced by the process of randomly sampling parents and applying
a stochastic reproduction operator 6 (e.g., a crossover operator; Equation (4)). LMX occupies an
intermediate level of explicitness:The conditional distribution induced by feeding the parent prompt
into the LLM is explicit in that it yields a series of probability distributions over tokens, and the
probability of any output sequence can be directly computed, but is implicit in the sense that
the internal workings of the distribution are encoded opaquely within the millions or billions of
parameters and activations of the LLM for a given prompt.

Whatever the level of explicitness, LMX acts like an EDA in that it builds a probabilistic model
of parents, from which children are then sampled. This connection is most clear when LMX takes
as input the full population of = potential parents. Let (= be a selection operator that refines a
collection of # > = candidates down to = (as in Line 13 of Algorithm 1).

Theorem 5.1 (EDA Representation). LMX and (= are sufficient operators to define an EDA.

Proof. Let %C denote the current population at iteration C (as when entering the loop at Line 5
in Algorithm 1). Then,

%C+1 = (= ◦ {G8 ∼ LMX(%C )}#>=
8=1 (7)

denotes an algorithm (akin to the loop in Algorithm 1) in which at each iteration the next population
is constructed by sampling # candidates from LMX conditioned on all of %C and then refining down
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to = candidates via (= . Using Equation (6),

%C+1 = (= ◦ {G8 ∼ k (LLM(q (%C )))}#>=
8=1 (8)

= (= ◦k ◦ V# ◦ LLM> ◦ q (%C ), (9)

where V# is the autoregressive sampling operation (Equation (2)) applied multiple times to generate
# candidates. Rotating the recursive composition to the left yields

�C+1 = LLM> ◦ q ◦ (= ◦k ◦ V# (�C ), (10)

where �C defines the distribution (i.e., model) that candidates are sampled from at iteration C .
Then, U = LLM> ◦ q is a model-building operator called only once per iteration that constructs a
probabilistic model from a set of solutions, and V = k ◦ V# is a sampling operator that samples new
solutions from a model. So, along with the selection operator ( = (= , we have

�C+1 = U ◦ ( ◦ V (�C ), (11)

which is the functional form of an EDA. �

The key design feature of an EDA is the class of distributions D to which � belongs. This class
D can range from simple univariate distributions [Baluja, 1994; Harik et al., 1999] to more complex
models like Bayesian networks [Pelikan et al., 1999 Pelikan and Pelikan, 2005].What is the classDLM

from which LMX constructs parent distributions? Due to its in-context learning capabilities [Rubin
et al., 2022; Xie et al., 2022], the LLM can be seen as attempting to infer underlying distribution of
parents in the prompt, and to generate continuations accordingly. By concatenating parents in a
random order, the implicit signal to the LLM is that the list is unordered. The LLM may notice some
accidental patterns in the order, but, as the number of parents increases, e.g., when LMX processes
the full population as in the EDA above, the significance of such spurious patterns diminishes and
a well-trained LLM is more likely to perceive the order as random. These parents are text-based
objects that must have been sampled from some ground truth distribution �∗, and thus the LLM’s
highest-probability action is to keep sampling objects from �∗ as it generates output. In other
wordsDLM consists of distributions of objects that are found in sets that might appear in the universe
of data from which the dataset used to train the LLM was drawn. An ideal EDA would select the
most probable � = �∗EDA ∈ DLM based on the parent set {G1, . . . , G: }. For example,

�∗EDA = argmax
�∈DLM

? (�)
:∏
8=1

? (G8 | �), (12)

where ? (�) is the prior probability of � inDLM. As the LLM becomes a better and better in-context
learner, it becomes better able to detect subtler patterns within a prompt of randomly ordered
concatenated parents, and thus

LMX(G1, . . . , G: ) ≈ �∗EDA. (13)

Note that the left side depends on an ordered list of parents, while the right side has removed this
dependency on order.

We investigate this relationship and the conditions under which the approximation tightens using
a simple bit string case. Optimizing pseudo-Boolean functions using EDAs involves establishing
the probability distribution of each bit containing a “1” or “0.” The Univariate Marginal Distribution
Algorithm [Mühlenbein and Paass, 1996], the prototypical EDA, samples _ individuals each iteration,
choosing the best `. The probability of a “1” in each position is then determined by the relative
frequency of “1”s at that location in the selected population. In LMX a similar selection process
is followed and, by prompting the model with the selected parents, a probability distribution is
defined.
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Fig. 12. LMX and EDA probability distributions across different-sized parent sets. The average difference in
gene probabilities predicted by LMX and EDA approaches 0 across various parent set sizes in a population of
bit strings. Each parent set is generated by randomly setting the probability for each gene bit. The EDA gene
probabilities are derived from the frequency of the gene values of the parents while the LMX gene probabilities
are obtained from the LM’s output logits (softmax applied with temperature = 1.0). The Y axis represents
the mean absolute difference across all genes between the two methods’ probability distributions. Error
bars indicate the SD over 20 experiments. The discrepancy between LMX and EDA probability predictions
decreases with the number of parents.

Despite the implicit definition in LMX, the probability distributions produced by LMX and an
EDA can be directly compared. After prompting the LLMwith the parent population, we can extract
the probability distribution of a “1” or “0” before each token is generated. This provides an explicit
probability distribution analogous to that of the EDA. In this way we can test the hypothesis that
LMX approximates an EDA more closely as the size of the parent population increases. We examine
the similarity of distributions with increasing populations in a six-bit case with the following
procedure:

(1) For each bit in the string, the probability of it being a 1 or 0 is drawn uniformly at random
from [0, 1].

(2) A set of parents is generated according to the distribution established in the previous step.
(3) Given this set of parents the mean absolute difference in the probability of a 0 for each gene

between the resulting EDA and LMX distributions is calculated.
(4) The entire experiment is repeated with a different initial probability distribution.

When we examine the difference between the EDA and LMX distributions with an increasing
number of parents (Figure 12), we find that indeed the disparity between the two distributions
diminishes as the number of parents increases, i.e., LMX becomes more similar to the EDA.

Though a faithful application of an EDA may include the full parent population in each parent
prompt, the experiments in Section 4 save compute by sampling only a small number of parents.
Nonetheless, by comparing LMX to EDAs it may be possible to analyze the optimization behav-
ior of LMX [Krejca and Witt, 2020] (e.g., global convergence analysis [Zhang and Muhlenbein,
2004]), as discussed in Section 7. Note that, as we are using a causal LLM, probabilities of each
bit are not technically independent, but rather conditional on the previously generated bits in
the genome as well as on the order of the parents. This nuanced scenario is also characteristic of
more sophisticated EDAs that incorporate conditional dependencies [Shakya and Santana, 2012].
Despite this confounding factor, it is clear that with a larger number of parents both approaches
converge toward the same distribution—and this connection to EDAs may help to explain why
LMX is effective as an off-the-shelf genetic operator across a wide range of domains.
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5.2 Universality of LMX
Section 5.1 highlighted the connection between LMX and EDAs. This section explores another
property of LMX, its theoretical universality (i.e., its ability in theory to express any genetic operator).
With a sufficiently expressive class of model, such as Bayesian networks [Pelikan et al., 1999; Pelikan
and Pelikan, 2005], EDAs can approximate any candidate distribution as the size of the parent set
increases [Zhang and Muhlenbein, 2004]. Not only can LMX sample from distributions represented
by an EDA, but it can in principle sample from any conditional probability distribution, making it
universal in the space of genetic operators, even with small parent sets. Recent theoretical work has
shown how crossover of large neural networks can yield universal approximation of reproduction
distributions [Meyerson et al., 2022]. LMX also achieves theoretical universal approximation via
large neural networks, but by feeding parents directly into the LLM, instead of crossing-over
weights. If modification (e.g., fine-tuning) of LLM weights is permitted, this result follows naturally
from the universal approximation ability of NNs [Cybenko, 1989; Hornik et al., 1989; Kolmogorov,
1957] (note that this property also applies in the single-parent case for mutation-based evolution
through LLMs [Lehman et al., 2023]):

Theorem 5.2 (Weight-based Universality). For any genetic operator 6 on candidate space X
and n > 0, if q : 2X → + ∗ is injective, andk : + ∗ → X is surjective, then ∃ an LLM s.t. for all parent
sets - of 6 and children G ��� Pr [G �� 6(- )] − Pr [G �� LMX(- )

] ��� < n. (14)

Proof. LMX(- ) = k (LLM(q (- ))) . Since q is injective, for all parent sets - , q (- ) = B- is
unique. Sincek is surjective, ∀ G ∈ X, ∃ BG s.t.k (BG ) = G . Let (G = {BG : k (BG ) = G}. It suffices to
find an LLM with weights such that��� Pr [G �� 6(- )] − Pr [BG ∈ (G �� LLM(B- )] ��� < n. (15)

The existence of such an LLM exists follows from the universal approximation capability of trans-
formers [Yun et al., 2019]. �

However, when coupled with external memory, existing fixed pre-trained LLMs today, e.g., Flan-
U-PaLM 540B [Chung et al., 2024], have been shown to implement universal Turing machines
(UTMs) [Giannou et al., 2023; Schuurmans, 2023], implying that universality can be achieved
through effective prompting schemes, without altering LLM weights:

Theorem 5.3 (Prompt-based Universality). For any genetic operator 6 on candidate space X and
n > 0, if the LLM is a UTM andk is surjective, then ∃ q s.t. for all parent sets - of 6 and children G��� Pr [G �� 6(- )] − Pr [G �� LMX(- )

] ��� < n. (16)

Proof. As in Theorem 5.2, LMX(- ) = k (LLM(q (- ))), and since k is surjective, it suffices to
find q such that ��� Pr [G �� 6(- )] − Pr [BG ∈ (G �� LLM(q (- ))] ��� < n. (17)

Since the LLM is a UTM, we can choose q to implement a program with argument - . Such a
program exists, since 6 implements its behavior up to the equivalence classes ofk . �

This property suggests that the power of LMX is not limited to the randomly ordered-parent-
concatenation-based crossover demonstrated in this article, but could be used to produce (manually
or automatically) crossover behavior optimized for specific tasks, e.g., through prompt-engineering.
This ability to achieve arbitrarily complex and diverse reproductive behavior within a single
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framework gives LMX a potential advantage over genetic operators that are hand-designed for
different tasks: In theory, LMX can represent all such operators (especially if they appear in the
dataset used to train the LLM). The generative distributions in the experiments in this article are
limited to ones induced by simple concatenation of parents, but the underlying universality of
the LMX method in general provides further explanation for how it can be an effective generic
operator across such a wide range of domains, as was demonstrated in Section 4.

Finally, LMX can be used to construct expressive encodings, which places it on a common the-
oretical footing alongside other popular and powerful evolutionary substrates including genetic
programming and neuroevolution [Meyerson et al., 2022]. The power of expressive encodings
comes from the fact that, as in natural evolution, the complexity of reproduction (here the LLM)
is found in the genome itself, and largely shared across individuals in a population. Suppose we
have genotypes G ∈ X and the original encoding � is surjective, i.e., every phenotype has some
corresponding genotype. Now, pack the complexity of the system into the genotype by instead
considering genotypes of the form (G, !!",q,k ):

Theorem 5.4 (LMX-based Expressive Encoding). �LMX ((G, LLM, q,k )) = � (G) is an expressive
encoding.

Proof. Consider the following recombination operator:

6

(
(G1, LLM1, q1,k1), (G2, LLM2, q2,k2)

)
=

(
G ∼ k1 (LLM1 (q1 (G1, G2))), LLM1, q1,k1

)
(18)

=

(
G ∼ LMX(G1, G2), LLM1, q1,k1

)
. (19)

This operator takes a constant number of parents and has constant description length modulo
its arguments, so 6 is a simple genetic operator (SGO) [Meyerson et al., 2022], and, since � is
surjective, by eitherTheorems 5.2 or 5.3 for any density ` over phenotypes, we can find G1, G2, LLM1,
q1 andk1 so that ` is approximated arbitrarily closely by

�LMX (6((G1, LLM1, q1,k1), (G2, LLM2, q2,k2))). (20)

Thus, �LMX satisfies the definition of an expressive encoding. �

Although for simplicity, in the SGO in this proof the LLM, q , andk are not altered, in general they
could be, and this view suggests that simultaneously evolving the solution G along with the LLM
and the prompting mechanism (i.e., q andk ) could be a powerful paradigm for more open-ended
systems.

5.3 Biasing the LMX Operator through Parental Ordering
As an example of how LMX could move beyond its instantiation as an LLM-based EDA, this section
investigates the effect of the ordering of parents within the parent prompt. EDAs typically assume
an unordered distribution, yet the inherent input ordering in autoregressive models creates a unique
opportunity for directing the operator’s output. Acting as pattern completion engines, these models
provide a pathway to guide the sampling process through directional cues. An ascending input
prompt produces ascending output. Consequently, an input arranged in ascending fitness order
prompts the model to generate output that follows an ascending fitness trend. If the model is able
to detect and continue this trend in generating its output, then it will generate children with higher
fitness than the parents.

Figure 13 illustrates this biasing technique using the LMX operator in the context of the one-max
problem. When randomly generated parents are arranged in ascending order of the “ones” count,
the resulting offspring distribution exhibits a clear skew toward higher fitness (left) and vice versa.
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Fig. 13. Impact of parental sorting on the distribution of offspring produced using the LMX operator. The
same set of parents, represented as bit strings, was sorted in ascending, descending, or random order based
on one of two fitness criteria: number of “ones” (left) and leading “ones” (right). Kernel Density Estimation
(KDE) curves reflect the overall offspring distribution trends, bars represent number of individual offspring.
The offspring distribution patterns mirror the parental sorting order, underscoring the influence of parent
order on the LMX operator’s output. Results are cumulative over 100 experiments with 10 children produced
in each experiment.

The Kernel Density Estimation (KDE) curves clearly represent how offspring distribution is
influenced by the sorting order of the parents. The precise counts indicate that for scores of 5 or less
from a 10-bit string, the offspring are more likely to originate from parents sorted in descending
order than ascending. Conversely, scores of 6 or more tend to come from parents sorted in ascending
order vs. descending. Ordering based on the number of leading ones yields a different bias consistent
with the ordering (right).

Subsequent work following the arXiv release of the LMX paper [Fernando et al., 2023; Yang et al.,
2024] performed extensive experimentation with different orderings of parents in more complex
natural language domains, and came to similar conclusions about the importance of ordering. Later
work, which used an LMX-like approach to discover new solutions to mathematical problems
[Romera-Paredes et al., 2024] also sorted parents by fitness before recombination. These results
are suggestive of the versatility of this biasing technique; a variety of sorting strategies could be
employed to cater to specific objectives. For example, including auxiliary helper objectives and
rankings such as those used in multi-objectivization [Jensen, 2004; Mouret, 2011; Schmidt and
Lipson, 2011], genotypic niching [Goldberg et al., 1987; Mahfoud, 1995], novelty [Lehman and
Stanley, 2011a,b], or QD [Cully and Demiris, 2017; Mouret and Clune, 2015] could bias LMX to
generate solutions that differ from those previous discovered or that exhibit specific attributes (see
Section 7 for a larger discussion). Though an important research direction worth exploration, this
article has presented LMX at its most basic and fundamental—in the experiments in Section 4 all
orderings are random.

6 Limitations
The above sections have illustrated the advantages of LMX. Here, we discuss limitations that may
arise in practice for LMX in its current form.

The experiments in this article each made use of GPU compute to perform LMX. Although there
is a fast-progressing effort to enable efficient LLM inference on CPU [Shen et al., 2023; Zhang et al.,
2024], there is still a benefit to GPU access, which may make LMX less accessible to users without
such resources. There is also the issue that the LLM can generate “invalid” outputs that cannot
be parsed as solutions, while in traditional EAs validity can be formally guaranteed by carefully
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designed genetic operators. If there is a high proportion of invalid outputs for a certain domain,
e.g., due to its complexity or distance from the LLMs training data, then the computational cost of
creating the next generation will increase.

Relatedly, if an application domain is especially far from the LLM’s training set, e.g., far from any
kind of text found on the internet, then choosing a method of population initialization becomes
particularly important. Asking the LLM to sample text unconditionally is certainly not an option,
since the output space of the LLM is of the astronomical size +)out , where + is the LLM’s vocab
size (≈ 30,000 for the LLMs in this article), and )out is its maximum number of output tokens
(>100 in this article). In the experiments in this article the initial population consisted of uniform
random samples from the phenotype space (Section 4.1), random samples from an existing dataset of
human-designed examples (Sections 4.2 and 4.4), or a small fixed set of seed examples (Sections 4.3
and 4.5). If a domain is so complex and novel that the above methods are challenging to implement,
a fallback approach could be to use a traditional EA to create an initial population and then convert
that population to text.

LMX in its current form is also limited by the size of the LLM context window, which, for the
LLMs used in this article, is on the order of thousands, meaning it will not be able to generate
solutions larger than this. EAs have been shown to be effective in search spaces with millions
and even billions of variables [Chicano et al., 2017; Deb and Myburgh, 2016]. LMX will not be
effective in such spaces unless it is possible to break the problem down into appropriately sized
subproblems, possibly relying on a traditional EA to discover this modularization. However, even
for relatively small search spaces, if LMX is not behaving as expected on a particular problem,
it may be difficult to find the precise cause of the issue, due to the opacity of LLMs, whereas in
traditional EAs it could be straightforward to reason about the kinds of variation a genetic operator
is likely to produce. This opacity could also obscure undesirable biases hidden in the model, which
could be especially concerning if the application has societal implications. If they are a concern, the
biases of a particular LLM can be investigated independently of the LLM’s role in LMX. Promising
progress is being made on interpretability of LLMs [Conmy et al., 2023; Singh et al., 2024], and
though it is still in the early stages, if successful, such methods could be readily applied to diagnose
issues in LMX and used to identify areas for improvement. For example, LLMs can have an inherent
bias of discounting information found in the middle of very long inputs [Liu et al., 2024]. This could
become an issue for LMX as the number or size of parents grow very large. Randomly ordering
parents avoids bias against specific parents, but new techniques may be required for the model to
fully incorporate knowledge from all input parents in each crossover step.

Finally, LMX alone does not allow us to escape common population dynamics concerns that
plague traditional EAs, such as premature convergence, diversity maintenance, and other explo-
ration/exploitation pitfalls. LMX does not solve these grand challenges of EAs, rather it provides a
generic genetic operator that allows practitioners to quickly set up algorithms to search diverse
spaces in a manner aligned with the generative nature of LLMs, i.e., aligned with the way humans
produce text.

7 Discussion and Conclusions
As a flexible and easy-to-use genetic operator, LMX provides a way for EA practitioners to take
advantage of the recent revolution in LLMs. The experiments in this article tackle a broad range
of potential applications, across equations, plain-text sentences, images, and code, leveraging the
burgeoning ecosystem of open source neural networks as means of generating variation, crossing
modalities, and measuring both fitness and diversity. LMX could even be used for continuous
optimization, as suggested by how it tunes floating-point constants (Figure 5).
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There is much room for future work. The experiments focused on breadth rather than depth, and
it is possible that with further effort LMX could enable state-of-the-art results, e.g., in symbolic
regression. One important direction is to explore the dependence of LMX’s performance on qualities
of the underlying LLM; the ability of LMX to suggest relevant variation in a particular domain
is likely dependent on the LLM’s training data (along with its size and how well it was trained).
For example, the expectation is that if the type of text chosen for evolution (e.g., code in a very
new programming language) is not well-represented in the training distribution of a particular
LLM, then LMX that relies on that LLM will likely perform poorly. Larger LLMs generally have
been trained on larger and broader datasets, so are more likely to be comfortable processing data
from a given domain. If larger models are infeasible to run, for any given model size there may be
a tradeoff between more generic models, which are likely to perform decently in most domains,
and more specialized ones. The discrepancy between Pythia and GALACTICA in Section 4.2 is
evidence for this tradeoff, though more would need to be done to see how widespread it is in
other domains. More capable models would be helpful both on the LLM side, e.g., for maintaining
coherence of generated solutions, and on the evaluation side, e.g., improved sentiment and visual
aesthetic evaluation models should lead to improved results in Sections 4.3 and 4.4. As LLMs get
more and more reliable, it may be possible to develop convergence bounds of EAs driven by LMX.
Such theoretical work could be based on establishing assumptions on the training data distribution
of LLMs, and then linking methods from ML theory with those from EA theory, with implications
for validity and variation in a single step of LMX used to bound convergence for a full run of
the algorithm. For example, the level of stochasticity in LMX can be controlled by the softmax
temperature parameter, which can be seen as analogous to a mutation rate parameter in a traditional
EA, and it would be possible to compute an error threshold based on temperature akin to classical
GAs, i.e., the maximum temperature for evolution to make progress [Ochoa, 2006]. The connection
to EDAs could enable the applications from EDA theory to this end [Krejca and Witt, 2020; Zhang
and Muhlenbein, 2004]. The experiments in this article relied on base LLMs, but it would be possible
to develop variants of LMX that apply to instruction-tuned LLMs [Chung et al., 2024], i.e., where
the prompt describes explicitly the type of variation behavior desired. Theoretical progress could
be amenable in such a case, by making explicit assumptions that the LLM will follow instructions
with some level of reliably.

Another interesting question is whether examples fed into LMX could be chosen more delib-
erately (e.g., only crossing-over similar individuals to get more nuanced variation); preliminary
experiments showed some qualitative effect from applying LMX on individuals with similar embed-
dings (Section 4.3), but require further experimentation to validate. Such work would benefit from
a generalization of the LMX heritability and diversity analysis in Section 4.1 to complex domains
where embeddings are the most practical space for computing distances between solutions. The
results in Section 5.3 indicate that different ways of feeding the parents into the LLM can have
a substantial impact on the generative process, giving yet another knob to control the nuance
of variation. One natural future direction is to explore whether there is benefit from combin-
ing the recombination capability of LMX with the mutation operators (either prompt-based or
diff-model-based) explored in ELM [Lehman et al., 2023]. Of further interest is the possibility for
self-improvement of LMX (as in ELM), through fine-tuning the model on successful examples of
variation in a domain. A final intriguing possibility is the use of LMX for interactive evolution, e.g.,
to interactively evolve sentences, code, or images [Bontrager et al., 2018; Secretan et al., 2008]. More
generally, beyond the GA framework used in this article, LMX could be integrated into many other
EA frameworks, such as EDAs, as suggested in Section 5; it is possible that within the dynamics of
other frameworks new synergies would be uncovered. Sections 4.3 and 4.5 investigated applying
LMX in a QD setting; Section 4.2 applied LMX in a multi-objective setting, but with only an implicit
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bias toward parsimony governed by the max output length of the LLM. We would expect even
more interesting dynamics to emerge in more sophisticated applications LMX in QD and multi-
objective EAs.

While LLMs are computationally expensive, all of the experiments in this article (with exception
of the Python Sodaracer experiment) were conducted either through Google Colab notebooks
or on a single GPU; the code to run experiments is surprisingly compact, as the LMX method
consists mainly of a simple LLM prompting strategy, and interacting with language and image
models has become simple through APIs and libraries such as those provided by HuggingFace. In
conclusion, there are likely many creative ways to beneficially combine various models together
that this article leaves unexplored; evolution in general is a powerful and easy-to-implement way
to quickly explore such possibilities, and LMX in particular is a promising and simple way of
instantiating them.
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Appendices
A Binary String Experimental Details
The base LLM used for these experiments is the Pythia-deduped 800M model. For the scaling experi-
ments, different parameter sizes were used (as noted in the text). All models are hosted on Hugging-
Face. These Pythia models are trained by EleutherAI for ongoing research [Biderman et al., 2023].

Samples from the LLM were set at a maximum of 150 tokens. For these experiments, rather
than using the temperature hyper-parameter for controlling LLM sampling, the top-: and top-p
hyper-parameters are used. Top-k restricts the LLM to output only from the : highest-probability
tokens. Top-p further restricts the tokens to be the top tokens that cumulatively take up p of the
probability mass. With mild tuning (i.e., rough hand-tinkering to get a sense of what sampling
hyper-parameters make sense for this LLM), for all experiments in this section, top-p was set to 0.8
and top-: was set to 30.

The EA used truncation selection of the top 50% of the population and elitism. The population
size was 10, the number of bits in the bit string 10, and the number of generations 10. The one-point
crossover operator chose two parents at random from the truncated set of parents, performed one-
point crossover to produce a single child, then flipped each bit in the genomewith a probability of 0.1.

Tokenizers vary according to the model, for instance 00 and 111 may each be a single token. In
the binary string experiments to avoid unintended effects from the tokenizer, rather than evolving
strings like 0011 all genomes were pre- and post-processed and given to the LM with “_” characters
separating each bit (e.g., 0011 becomes _0_0_1_1) ensuring each bit is a single token.

A.1 Binary Strings Model Scaling
In this experiment, the number of parents is fixed to 3, and a range of models from the Pythia suite
are applied in the same way as in the variation experiment of Section 4.1, i.e., to generate variation
from randomly sampled binary strings (although in this experiment they are of length 9 as opposed
to length 6). When averaged over 15 randomly generated parent sets, both the percent of valid
offspring and number of novel offspring generally increase with model size (Figure 2(b)).

In this experiment and every other experiment in this article that compared different LLMs,
unless otherwise noted, the prompt template used for each model was the same.

B Symbolic Regression Experimental Details
GALACTICA 1.3B was used as the LLM [Taylor et al., 2022]. The sampling temperature was set
to 0.8, which in initial tests was found to noticeably improve consistency of generated output
compared to the default of 1.0. All other sampling parameters were defaults.

The initial population had 1,000 candidates, and population size was set to 50 thereafter. A larger
population could improve performance; here it was limited to 50 for computational efficiency.
Any generated offspring that was already in the population was immediately discarded without
being evaluated. To prevent stagnation with this relatively small population size, throughout
evolution, there was always a 0.05 probability of generating a new candidate directly from the
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Fig. C1. Representative MAP-Elites heatmaps for Homer Simpson quote sentiment. Shown are heatmaps of
the final QD maps discovered by MAP-Elites for LMX-Near, LMX, and the baseline control. The left-most grid
squares are niches for sentences most like the original quote, while the furthest grid squares are for sentences
very far from the original quote (according to the embedding model). Black indicates the map square was not
filled, while white indicates maximum fitness (1.0). The control struggles to fill many niches, especially those
nearest to the start sentence. LMX-Near performs better than LMX in this case, filling a few extra niches
nearer to the start sentence.

prior set of benchmark expressions (randomly selecting an expression and randomly mapping
variables) instead of through LMX. The benchmark expressions are popular benchmarks, whose
Python representations were copied from the “deep-symbolic-optimization” GitHub repository
(github.com/brendenpetersen/deep-symbolic-optimization/).

Text length for the LLM was capped at 500 tokens. Running 5,000 generations took around 100
hours. The vast majority of wall-clock time is spent in the forward pass of the LLM. This could be
reduced considerably through batching offspring generation, which is naturally parallelized.

C Modifying Sentiment Experimental Details
The LLM used in this experiment for LMX is the 1.4 billion parameter Pythia model, hosted on
HuggingFace. As in the binary string experiment, for sampling, top-p was set to 0.8 and top-: was
set to 30. The max number of tokens generated was set to 128.

Figure C1 shows representative heatmaps of final MAP-Elites maps for each treatment for the
Homer Simpson quote. Figure C2 shows fitness plots for the Gore Vidal quote, Figure 8 shows
fitness plots for the Homer Simpson quote, and Figure C3 shows fitness plots for the Woody Allen
quote. Further examples of evolved behavior are shown in Appendix C.1.

C.1 Additional Positive Sentiment Results
The full Pareto front for one representative run of modifying the Simpsons quote sentiment (from
LMX-Near) is shown in Table C1.

For the Gore Vidal quote, “Whenever a friend succeeds, a little something in me dies,” a repre-
sentative Pareto front (from LMX-Near) is shown in Table C2.

For the Woody Allen quote, “Life is divided into the horrible and the miserable,” a representative
Pareto front (from LMX-Near) is shown in Table C3.

C.2 Evolving toward Negative Sentiment
We also did some initial experiments targeting the negative sentiment class instead of the positive
one, i.e., taking positive quotes and turning them negative. As in the experiments in the article,
LMX is able to successfully evolve modifications to quotes that achieve high negativity. However,
it often does so by evoking vulgar language or dark situations (e.g., the death of loved ones, or
depressive thoughts about hate).
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Fig. C2. Modifying Gore Vidal quote sentiment. The plot compares LMX-Near, LMX, and the baseline control
in increasing the positive sentiment of the quote: “Whenever a friend succeeds, a little something in me dies.”
LMX-Near outperforms LMX significantly, and both significantly outperform the control. Example sentences
of such runs are shown in Appendix C.1.

Fig. C3. Modifying Woody Allen quote sentiment. The plot compares LMX-Near, LMX, and the baseline
control in increasing the positive sentiment of the quote: “Life is divided into the horrible and the miserable.”
LMX and LMX-Near do not perform significantly differently, but both significantly outperform the control.
Example sentences of such runs are shown in Appendix C.1.

It does often make resigned versions of common inspirational quotes; e.g., one negative version
of “Be the change that you wish to see in the world,” it produces is “you can’t be the change you
want to see in the world.” From the same run, the most negative sentence on the Pareto front is:
“you are the world’s worst failure, you have not had good news for the last six months, and you
will never find a way to make it up.” From the inspirational quote “When the sun is shining I can do
anything; no mountain is too high, no trouble too difficult to overcome,” it creates a dreary version:
“The earth and the mountains beat me hard, the winds blow heavily, the weather is bitter and cold;
I cannot do anything.”

While the results are not always pleasant, these preliminary experiments highlight that by using
a different classification label (or potentially a different model that recognizes different properties
of text altogether), it is possible to use LMX for style-transfer of possibly many other styles.

D Image Generation Experimental Details
The image generation experiment used Stable Diffusion v1.4 as the text-to-image model for gen-
erating images from evolved prompts; specifically, the 16-bit weight variant (fp16), run from the
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Table C1. Full Pareto Front of a Representative Run of Sentiment
Modification for the Homer SimpsonQuote

Distance Positivity Sentence
0.00 0.021 Kids, you tried your best and you failed

miserably. The lesson is, never try.
0.09 0.023 Kids, you tried your best, but you failed

miserably. The lesson is, never try.
0.12 0.049 Kids, you tried your best, but you failed

miserably. The lesson is, always try.
0.20 0.103 Kids, you tried your best, but you failed.

the lesson is, never stop trying.
0.21 0.157 Kids, you always tried your best and you

failed. The lesson is, never stop trying.
0.25 0.158 Kids, you tried, tried your best, but you

failed. The lesson is, never stop trying.
0.28 0.886 Kids, you tried your best. The lesson is,

you always succeed.
0.36 0.901 Kids, you tried your best. The lesson is,

success is guaranteed.
0.42 0.938 Kids, you did your best. The lesson is,

you never stop trying.
0.46 0.956 Kids, you went above and beyond. The

lesson is, never fail, but always try.
0.50 0.961 Kids, you always succeed. The lesson is

never fail, but always try, and as long
as you keep trying, you will succeed.

0.56 0.964 Kids, you have proven yourself a winner.
The lesson, is, never give up, but always
try, and as long as you keep trying, you
will succeed.

0.61 0.983 Kids, you’re the best ever. The lesson is,
the best always wins.

0.72 0.987 Kids, you’re the best. You’re the best,
the best. The best.

0.79 0.989 Kids, you are the BEST, the BEST the
BEST, the BEST FUTURE!

0.83 0.989 -Kids, this was the BEST DAY OF YOUR
LIFE!

0.86 0.990 -Kids, today we’re going to have the
BEST DAY OF OUR LIFE.

0.89 0.991 -Kids, today we’re going to have the
BEST DAY OF OUR LIFE‼

0.93 0.991 -Kids, we are so happy to have met you.
We love you both‼

0.95 0.991 Kids, we are so happy to have met you!
We love you both‼

1.00 0.992 Kids we are so excited that you came
into our lives today!Thank you for mak-
ing our day a little brighter.
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Table C2. Full Pareto Front of a Representative Run of Sentiment
Modification for the Gore Vidal Quote

Distance Positivity Sentence
0.00 0.389 Whenever a friend succeeds, a little

something in me dies.
0.26 0.662 Whenever a friend succeeds, the little

things in me die.
0.30 0.796 When a friend succeeds, the little things

in me die.
0.31 0.892 When a friend succeeds, I die a little.
0.40 0.948 When a friend succeeds, a little thing in

me lives.
0.52 0.949 If a friend succeeds, a big thing in me

lives.
0.56 0.977 If a friend succeeds, a great thing comes

out of me.
0.59 0.985 If a friend succeeds, that’s the most awe-

some thing that’s happened to me.
0.63 0.985 If a friend succeeds, I get an exciting

feeling in my life, because of them.
0.66 0.986 If a friend succeeds, my friends have the

most exciting feeling in my life, because
of them.

0.69 0.988 If a friend succeeds, I have the most ex-
citement in my life, because of them.

0.82 0.990 And I’m happy for this friend—I’m
happy for this friend.

0.88 0.991 And I’m so happy that I found my new
best friend, I’m so happy that I found
my new best friend.

HuggingFace diffusers library.8 Images were generated at the default 512 × 512 resolution, and
generation was run for 10 diffusion steps per image. While the default number of steps is normally
50, performance was valued over image fidelity. We left the default NSFW filter enabled, which
produces a black image when triggered.

Image fitness functions were computed using 8-bit integer RGB images; the maximum fitness for
the excess-red, excess-blue, and excess-green fitness functions is therefore 512·512·255 = 66,846,720,
which would be the fitness of a monochromatic image of the target color. The plot in Figure 10 is
normalized with 1.0 set to this maximum fitness.

Pythia-deduped 2.8b was used as the LLM. This is from the same Pythia model series discussed in
Appendix A. Up to 75 tokens were sampled from the LLM for each LMX-generated prompt, to stay
under Stable Diffusion’s limit of 77 tokens in a prompt (Pythia and Stable Diffusion have slightly
different tokenizers).

The GA loop used for these experiments was identical to the one from the symbolic regression
experiments. The same tournament selection process was used, as well as the same 0.05 probability
of drawing a new human-written prompt from the initial dataset instead of performing LMX (0.95
probability of generating a new prompt through LMX). Four parents were used as prompts to the

8https://github.com/huggingface/diffusers
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Table C3. Full Pareto Front of a Representative Run of Sentiment
Modification for the Woody AllenQuote

Distance Positivity Sentence
0.00 0.013 Life is divided into the horrible and

the miserable.
0.20 0.347 Life is, not divided into the horrible

and the miserable.
0.24 0.460 Life is, not divided into the horrible

or the miserable.
0.30 0.651 For you are the Life, not divided into

the horrible, the miserable.
0.34 0.704 You are the Life, not divided into the

horrible or the miserable.
0.41 0.751 This is the eternal life, not divided

into the horrible or the miserable.
0.46 0.789 You are the eternal life, not divided

into the horrible or the miserable.
0.49 0.893 You are the beautiful life, not di-

vided into the horrible or the miser-
able.

0.51 0.902 You will see the beautiful life, not
divided into the horrible or the mis-
erable.

0.53 0.910 You will be the beautiful life, not
divided into the horrible or the mis-
erable.

0.73 0.970 Happiness is the way to live.
0.79 0.987 Happiness is the way to live. And

I’m very happy with the way that I
live.

0.83 0.988 My life is wonderful, I’m very happy
with the life.

0.84 0.990 We will live in the glorious happi-
ness. And it is really good, it is really
good. And I’m very happy with the
life that I have.

0.92 0.991 And I’m very happy with the life
that I have. And I can’t wait to see
the next one.

LLM to produce each LMX-generated child. The number of parents was not tuned for this problem,
but chosen based on the results in Figure 2(a). Each parent was placed in a paragraph by itself
prefixed by “Prompt:.” The list of parents ended with an open “Prompt:” to request that a child be
generated. On an NVIDIA GeForce RTX 3090, with a population size of 50, each generation took
about 4 minutes of wall-clock time.
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Fig. E1. Results from initial experiments in the Sodaracers domain, using a prompt that concatenates parent
programs together and forces the correct function signature as described in Appendix E, for varying numbers
of parents in the language model prompt and across language model scale. This experiment consists of 1,000
steps of initialization of Sodaracers from the initial seed programs with no evolution. (Top) Number of niches
filled in MAP-Elites. (Center) QD scores. (Bottom) Validation rate (%) for the generated Sodaracers. Higher
numbers of parents nearly always increase performance in this setting, and the 2B model performs the best
(interestingly, the 6B model underperforms; the reason is unclear, but suggests follow-up work to better
understand what LLMs best fit a given task).

E Python Sodaracers Experimental Details
Experiments for the Sodaracers domain were carried out using Salesforce’s CodeGen suite of
language models [Nijkamp et al., 2023], using the 350M, 2B, and 6B sizes in their “mono” variant.
The “mono” models were first pre-trained on natural language, before being fine-tuned on a large
dataset of code in many languages, before finally being fine-tuned on a dataset of Python only
code. All model sampling was done with top p = 0.95, temperature = 0.85, and with a maximum
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generation length (in addition to the prompt) of 512 tokens. Evolutionary runs, as described in
Section 4.5, took up to 30 hours (at 6B scale) to run on a single Nvidia A100 40 GB GPU, while
smaller models were significantly quicker. Use of Nvidia’s Triton Inference Server has the potential
to speed up sampling from these language models by up to an order of magnitude.

The seven Sodaracers used as our seed programs are described in the appendix of Lehman et al.
[Lehman et al., 2023]: the square, radial, wheel, runner, galloper, CPPN-Fixed, and CPPN-Mutable
programs (CPPN stands for Compositional Pattern-Producing Network [Stanley, 2007]).

The Sodaracers were evaluated in a Python simulation of the Sodarace domain [Szerlip and
Stanley, 2013] written in Box2D (from the Open ELM project [Bradley et al., 2024b]). The fitness
function was measured as the horizontal distance traveled by an instantiated robot after 1 second
of simulation time; this abbreviated evaluation time is enough to show meaningful locomotion and
was chosen to demonstrate meaningful evolution within our computational constraints.

As observed in prior work with few-shot prompting of language models [Lu et al., 2022a], we
noticed that success rates (the percentage of generations which resulted in valid Sodaracers) varied
dramatically with the order of parent functions in the prompt, sometimes by over 50%. To control
for this we either averaged our results over every possible permutation of parents or (in long
evolution runs) randomly selected from the set of permutations for each sample.

The main experiments in the article, described in Section 4.5, prompt the language model with a
concatenation of the seed functions, any necessary Python import statements, and the line def
make_walker(): was appended to the end, in order to “force” the language model to complete a
function with this signature.

We also experimented with removing this signature from the end, which produces slightly worse
results, particularly in terms of the validation rate. For single-seed prompt mutation, all generations
failed to validate, while for LMX with two or three parents the validation rate fell by 15% compared
with the main prompt.

In addition, we cursorly investigated adding an “instruction” to the end of the LMX prompt,
such as variants of “Combine the starting programs above to create a new program.” This provides
some minimal domain customization to the language model, and is reminiscent of prior work
demonstrating that fine-tuning language models on tasks described as instructions can dramatically
improve performance on unseen tasks [Sanh et al., 2022; Wei et al., 2022a]. While promising, we did
not further pursue this direction, but believe such instruction prompting is an intriguing direction
for future work with instruction-fine-tuned language models, which may offer improved quality
and diversity of evolved programs or strings if prompted in a way compatible with their training
data (as discussed in Section 7).
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