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Abstract
Text-to-audio models are a type of generative model that pro-
duces audio output in response to a given textual prompt. Al-
though level generators and the properties of the functional
content that they create (e.g., playability) dominate most dis-
course in procedurally generated content (PCG), games that
emotionally resonate with players tend to weave together
a range of creative and multimodal content (e.g., music,
sounds, visuals, narrative tone), and multimodal models have
begun seeing at least experimental use for this purpose. How-
ever, it remains unclear what exactly such models generate,
and with what degree of variability and fidelity: audio is an
extremely broad class of output for a generative system to
target.
Within the PCG community, expressive range analysis (ERA)
has been used as a quantitative way to characterize genera-
tors’ output space, especially for level generators. This pa-
per adapts ERA to text-to-audio models, making the analysis
tractable by looking at the expressive range of outputs for spe-
cific, fixed prompts. Experiments are conducted by prompting
the models with several standardized prompts derived from
the Environmental Sound Classification (ESC-50) dataset.
The resulting audio is analyzed along key acoustic dimen-
sions (e.g., pitch, loudness, and timbre). More broadly, this
paper offers a framework for ERA-based exploratory evalua-
tion of generative audio models.

Introduction
Joint embedding spaces that map multi-modal content into a
shared coordinate system – such as text and images (CLIP;
(Radford et al. 2021)) or text and audio (CLAP; (Wu et al.
2023; Elizalde et al. 2023)) – enable generative models to
procedurally generate domain-specific content aligned with
the natural language vocabulary a game designer would need
to explore them. There are a growing number of text-to-
audio models available in this category. After some initial
setup, game designers could add audio samples from mod-
els like StableAudioOpen (Evans et al. 2025) or MMAudio
(Cheng et al. 2025) that can be directly queried for audio,
which is nearly instantly generated to suit their needs. Fig-
ure 1 schematically illustrates the prompts “cat meowing
plaintively” and “ambient music” being sent to a text-to-
audio model, resulting in 100 generated examples of each.
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Figure 1: Querying a Text-to-Audio Model. Text-to-audio
models operate by taking text prompts as input, mapping
them to a joint embedding space that relates text and au-
dio, and generating audio clips as output. This schematic il-
lustrates generating 100 audio outputs each for the prompts
“cat meowing plaintively” and “ambient music”. The au-
dio for this and all other figures in the paper is available at
https://doi.org/10.5281/zenodo.16998750.

A key question in evaluating generative systems is the
range of outputs that can be generated. Do we always get
essentially the same plaintive cat meow, or many interest-
ing yet realistic variations? And what do we mean by “inter-
esting” variations? While one might hope for some kind of
“best” generator, there is a sense in some creative communi-
ties that perhaps “diversity is all you need” (Eysenbach et al.
2018; Lehman and Stanley 2008), with the goal being a di-
verse array of high-quality content that differs along dimen-
sions of diversity specified by the content-creator (Lehman
and Stanley 2011; Mouret and Clune 2015; Fontaine et al.
2020, 2021; Meyerson et al. 2024).

But how diverse are the outputs of current text-to-audio
models? Such models take their generative domain to be the
very general concept of audio. In practice, this means any-
thing that can be recorded in a digital audio file. This flat-
tens the rich cultural specificity of sound into a single, ho-
mogenized latent space. In addition to cat meows and ambi-



ent music, the catch-all category of audio includes folk and
world music, classical symphonies, high-school band per-
formances, avant-garde experimental music, dramatically
shattering glass from a movie, beeps and bloops from com-
puter interface programming, human voices in many lan-
guages, and so on. It is not likely that everything is equally
well represented in this flattened space of all-possible-audio.

We hypothesize that parts of the latent audio space are
much more densely modeled than others, in the sense of be-
ing able to produce a wide variety of meaningfully different
examples of audio in that part of the space. In this paper, we
carry out an expressive range analysis with fixed prompts
and three open-source text-to-audio models – Stable Audio
Open (Evans et al. 2025), MMAudio (Cheng et al. 2025),
and AudioLDM 2 (Liu et al. 2024) – to begin to explore that
hypothesis.

Our experimental approach is to choose fixed prompts,
and view a text-to-audio generator with a fixed prompt as
itself a generator (a subset of the full generator). For exam-
ple, Figure 1 shows two generators in this view, one for “cat
meowing plaintively” and one for “ambient music”. This
method lets us separately probe specific parts of the large
generative space that is otherwise difficult to get a handle on.
We characterize the generative spaces of each of these fixed-
prompt generators using expressive range analysis, with a set
of prompts drawn from audio sound-effect research.

Although we also draw on audio research (specifically for
the choice of sound effects to generate, and for the expres-
sive range metrics), we situate this paper primarily in the
literature on AI and interactive digital entertainment for two
reasons:

• Text-to-audio models are increasingly of interest to inter-
active media developers for sound effects, backing audio,
etc., but there is not yet much analysis of what their gen-
erative output looks like.

• We think expressive range analysis from the procedural
content generation (PCG) community (Smith and White-
head 2010) provides a particularly suitable framework
for exploratory data analysis of these models as gener-
ative spaces, as we hope to explain below.

Motivating Example: Thunder
Consider the single-word prompt thunder. If we repeatedly
feed this prompt to a text-to-audio model, each time we
will get one example of generated audio that (hopefully)
sounds like thunder of some kind. What we’d like to under-
stand is how these audio outputs vary for multiple samples
of a model with a fixed prompt, both within a given model
and between models. Does a given model, asked simply for
“thunder”, have a characteristic type of thunder it produces
by default? Are there other sounds besides thunder audible
in the sample? Is there much variation between samples, or
are they close variants of each other?

Individual generative outputs
A way to start characterizing the output is to simply generate
a few sample outputs and listen to them. To visualize these

audio outputs for the purpose of inclusion in a paper, Fig-
ure 2 shows a total of 10 spectrograms of 10-second audio
samples generated for the prompt thunder, five each from
two different models. The top row shows the outputs from
Stable Audio Open, and the bottom row from MMAudio.

From both listening to the audio and looking at the spec-
trograms, we can make a few observations:

• The Stable Audio Open samples (top row) appear to vary
more across the 10 seconds than the MMAudio samples
(bottom row) do.

• Listening to the audio samples, the reason for MMAu-
dio’s output having a wide range of frequencies (up to
about 13000 Hz) fairly constant across all 10 seconds
of the clips becomes clear: MMAudio also generates the
sound of rain along with the thunder, while Stable Audio
Open doesn’t.

• Stable Audio Open generates at least one distinct thun-
derclap in all five samples, with somewhat different tim-
ing and shape. In the first three, there is a single thun-
derclap near the beginning of the audio that trails off.
In the fourth sample, there are several additional thun-
derclaps. In the fifth, the thunderclap is later and more
muffled. MMAudio, by contrast, generates more muffled,
rumbling thunder, only somewhat audible above the rain.

Several of these observations we made refer to the pres-
ence and timing of thunderclaps. We can look at that more
explicitly. To more clearly visualize the location of the thun-
derclaps (if any), we can compute the total energy of the au-
dio signal over time. This takes the full time–frequency rep-
resentation given in the spectrograms, and summarizes just
the energy content over time, losing the data about which
energy is in which frequencies.

Figure 3 shows the same 10 audio samples, this time with
the y axis giving total energy content (specifically, root-
mean-square or RMS loudness). For Stable Audio Open (top
row), the loudness peaks were already fairly easy to read
from the spectrogram, so they simply confirm our previous
observations. For MMAudio (bottom row), however, we can
now more clearly see the locations of some of the muffled
thunderclaps that are obscured by the rain frequencies in
the spectrogram; for example, note the thunderclap about
halfway through the 5th sample.

More generally, we have chosen one summary quantity
(RMS loudness) and looked at its change over time. This
emphasizes one of many possible changes over time that one
might care about in an audio clip. In the case of thunder, the
loudness peaks usually correspond to a specific semantically
meaningful event, the thunderclap, though that may not be
true for other types of audio.

Expressive range analysis
So far, we have looked at a handful of samples, small enough
to consider each one individually. To understand variation of
model output, however, and especially as we consider more
prompts, we will need a way to summarize a larger num-
ber of outputs in one visualization. That is where expressive
range analysis comes in. If we summarize each generative
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Figure 2: Spectrograms of Audio Generated with ‘Thunder’ Prompt. Spectrograms of five 10-second output samples for
the single-word prompt thunder. Stable Audio Open in the top row; MMAudio in the bottom row.
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Figure 3: Loudness of Audio Generated with ‘Thunder’ Prompt. RMS loudness vs time plots for the same samples that
were shown as spectrograms in Figure 2. Stable Audio Open in the top row; MMAudio in the bottom row.
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Figure 4: Expressive Range of Thunderclap Timing and
Magnitude for the ‘Thunder’ Prompt. Relative magnitude
vs. timing of the RMS loudness peak for 100 samples gener-
ated by each model for the prompt thunder. Relative magni-
tude is defined as peak loudness divided by average loudness
across the 10-second clip. From this, we can see that Stable
Audio, but not MMAudio, tends to generate audio with a
distinct thunderclap in the first few seconds.

output by, say, two numbers, we can plot the density of out-
puts on a two-dimensional plot, where each output is po-
sitioned at one point in the plot. (In general, an expressive
range plot can be an n-dimensional plot using n summary
metrics, but 2D plots are most common for interpretability.)

For the specific case of thunder, we can get down to two
dimensions by further summarizing the loudness-over-time
plots from Figure 3 into just into two numbers that provide
one possible summary of the loudness trajectory: the loca-
tion of the loudness peak (where it falls in the audio clip
between 0.0 and 10.0 seconds) and the peak’s relative mag-
nitude (peak loudness divided by the clip’s average loud-
ness). Note that this kind of summarization does inevitably
lose some information; for example, about secondary peaks.

From that two-number summary, we can produce an ex-
pressive range diagram: Figure 4 shows the expressive range
of two text-to-audio models prompted with thunder as the
prompt, where expressive range is measured by these two
metrics summarizing the loudness peaks’ location and mag-



nitude (100 samples per model).1
From the expressive-range diagram, we can more confi-

dently conclude that there is a fairly consistent difference
in how the two models’ generative space differs for thun-
der: Stable Audio Open usually (but not always) has a pro-
nounced thunderclap in the first two seconds of the clip,
while MMAudio rarely produces a pronounced thunderclap,
and whatever muffled one might exist isn’t clustered at any
particular location in the clip.

Even with this simple example, there are a number of
other things we could investigate besides the timing and
loudness of the thunderclap. For example, when there is a
constant noise like rain, is it always at the same pitch? Does
that differ between models? For the purposes of this paper,
however, we will depart from our motivating thunder exam-
ple and move on to investigating a larger set of sound effects.

Expressive Range With ESC-50 Labels
Next, we expanded our investigation beyond the single
“thunder” example to the 50 labels from the ESC-50 dataset
for environmental sound (Piczak 2015).

The ESC-50 dataset consists of a total of 2000 hand-
curated audio samples, with 40 samples for each of the 50
labels. The 50 labels are all short descriptions of between
one and three words each, such as rain, crying baby, and can
opening. They are grouped into 5 categories, with 10 labels
in each category: “Animals”, “Natural soundscapes & water
sounds”, “Human, non-speech sounds”, “Interior/domestic
sounds”, and “Exterior/urban noises”.

Although originally developed for sound classification
rather than generation, using ESC-50 gives us a set of tar-
get labels to investigate, each of which contains real, non-
generated reference sounds, to which the generative range
of each model’s outputs for that label can be compared.

Prompting: We prompted each model with Sound of [la-
bel], where [label] was replaced with each label from ESC-
50; for example, Sound of can opening. Prompt construction
isn’t the focus of this paper, and this was a simple prompt
that, nonetheless, in spot-checks still produced reasonable
outputs; but we note that it is common in practice to use
much more elaborate prompts.

We generated 100 10-second audio clips for each label,
using each of three models: Stable Audio Open, MMAudio,
and AudioLDM 2. These 15,000 generated audio clips are
available in the Zenodo archive accompanying this paper:
https://doi.org/10.5281/zenodo.16998750.

Which expressive range metrics?
The analysis of the thunder prompt above used a set of met-
rics developed bottom-up by listening to example outputs.

1Side note on a data presentation decision: all expressive range
diagrams in this paper are shown as scatterplots, with multiple
generators’ outputs on each diagram, color-coded by generator. In
other work, generator outputs are more often binned into 2D den-
sity histograms, with one diagram for each generator. Since we use
no more than 100 samples per generator, binning the outputs is un-
necessary, and plotting each point separately in a scatterplot lets us
overlay multiple generators on the same diagram.

After listening to some examples, we determined that the
timing and magnitude of a thunderclap was a particularly
salient feature, and then plotted an expressive range diagram
illustrating the range of two models’ generative outputs on
those two axes.

We might hypothesize that, at least for sound-effect types
of audio, these two metrics (location and magnitude of a
loudness peak) would be interesting in general, for many
kinds of sound effects. However, in our initial analysis, that
seems not to be the case. Figure 5 shows loudness-peak
expressive range diagrams for five labels from ESC-50; to
avoid cherry-picking, these are the alphabetically first labels
in each of the five ESC-50 categories. With one exception,
they do not seem to illuminate much about either the individ-
ual models or the differences between the models. The one
exception is that for the label “helicopter” (prompt: sound
of helicopter), Stable Audio Open consistently produces a
loudness peak (peak loudness 3-5x average loudness), while
the other two models don’t. Listening to the samples, this
appears to be because Stable Audio Open’s helicopter clips
tend to produce helicopter fly-bys, where the sound gets
louder and then softer again, while the other two models
don’t (however, it has no clear pattern to whether the fly-by
is early or late in the clip).

We could nonetheless follow the basic methodology out-
lined in the “thunder” motivating example: for a given la-
bel, listen to some example clips (at least a few from
each model), write some qualitative observations about what
seems to vary both within and between models, and then
come up with bespoke metrics that illustrate these seman-
tically meaningful variations in generative output. In fact,
we believe doing so is a promising form of exploratory data
analysis, and we especially recommend following such an
approach when a sound designer intends to use a particular
type of audio output repeatedly. However, to be able to sum-
marize the generative range of models across all 50 labels in
the ESC-50 dataset, we need something more general.

Acoustic diversity analysis
To apply a single set of metrics across the entire ESC-50
set, we represent audio outputs in terms of perceptual sound
attributes, using relatively standard methods from the au-
dio analysis literature. These are designed to be compara-
ble across prompts, but each axis will not have as simple an
interpretation as metrics like the loudness peaks in the pre-
vious figures. We use summarized representations of pitch,
loudness, and timbre characteristics intended to capture their
overall perceptual qualities, as well as variation in such qual-
ities over the sample duration.

Audio metric computation: We first converted all audio
files to mono and the same sampling rate (22050 Hz). We
then extracted signal processing features that are strongly
correlated with these perceptual attributes of sound, namely
fundamental frequency (for pitch), A-weighted RMS energy
(for loudness), and Mel-frequency cepstral coefficients or
MFCCs (for timbre).

To extract fundamental frequency (f0), we used the pYIN
algorithm (Mauch and Dixon 2014) as implemented in
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Figure 5: Expressive Range of Timing and Magnitude Peak for Five ESC-50 Prompts. Expressive range diagrams showing
relative magnitude and location of the RMS loudness peak for 100 samples generated by each model for each of five ESC-50
labels. (Note that the subplots’ y axes cover different ranges.)

the librosa audio analysis Python library (McFee et al.
2015), using a hop size of 512 samples. To compute A-
weighted RMS energy, we used a frame length of 20248
samples and a hop size of 512 samples. To compute MFCCs,
we used a mel spectrogram with 128 bins, a frame length
of 2048 samples, a hop size of 512 samples, and retained
the first 13 MFCCs. We then augmented each representa-
tion with first- and second-order differences (i.e., ‘deltas’
and ‘delta deltas’) and summarized these features over time
by computing the mean, standard deviation, minimum, and
maximum. This resulted in three feature vectors for each au-
dio file, one relating to each perceptual attribute (pitch (f0
statistics - 12 dimensions), loudness (a-weighted rms statis-
tics - 12 dimensions), and timbre (MFCC statistics - 156 di-
mensions)). Note that when calculating statistics for f0, only
voiced (i.e., pitched) frames are included, and if a file does
not have any voiced frames, this file is excluded from the f0
analysis.

Finally, for the purpose of plotting these multi-
dimensional representations of loudness, pitch, and tim-
bre as two-dimensional expressive range diagrams for each
prompt, we used principal components analysis (PCA) to
extract the first two principal components for each (pooled
across all three generators’ outputs plus the ESC-50 samples
corresponding to each prompt).2

Results
Figure 6 plots the first two principal components of our loud-
ness, pitch, and timbre metrics for five labels from ESC-50
(the same five labels as in Figure 5). There are 340 samples

2For a previous example of using PCA for expressive range
analysis, see (Hervé et al. 2023).

plotted on each scatterplot: 100 each from the three gener-
ative models being investigated, plus the 40 hand-cured ex-
amples in that category from ESC-50. Note that since the
two axes are the result of a PCA transformation, they do not
have any direct interpretation, unlike previous figures. How-
ever, relative positions are comparable, such as whether the
dot cloud for two models overlaps, or is more or less tightly
clustered.

We argue that in contrast to Figure 5, we do begin to see
useful distinctions in the Figure 6 diagrams, suggesting that
these are useful general metrics (not designed for a spe-
cific prompt) for exploratory data analysis across prompts.
As one example, MMAudio (in green) shows outputs fairly
tightly clustered in all three metrics for rain, and in two
metrics (loudness and timbre) for helicopter, indicating rel-
atively little diversity of generative outputs for those two
labels. On the other hand, Stable Audio does have a di-
verse range of outputs by these metrics for helicopter – but
they are not very close to the reference outputs in the hand-
curated ESC-50 samples.

While our primary goal is per-prompt exploratory data
analysis with expressive range diagrams, it may also be use-
ful to calculate some overall summary statistics. Table 1
shows a summary of the variance in generative model out-
puts on these metrics, aggregated across all 50 labels from
ESC-50 (i.e., 5000 generated samples per model, and the
2000 dataset samples for ESC-50).

Variance computation: For each of the audio metrics –
loudness, pitch, and timbre – we 1) pooled together the fea-
ture vectors from all the model outputs, along with those
from the ESC-50 dataset; 2) computed the principal com-
ponents analysis (PCA) transformation matrix, retaining the
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Figure 6: Expressive Range of PCA-Reduced Audio Features for Five ESC-50 Prompts. Expressive range diagrams showing
the first two principal components (x and y axes, respectively) of higher-dimensional audio metrics intended to capture samples’
loudness, pitch, and timbre characteristics (see text for details). Each row shows data for one label from ESC-50. For each label,
the ESC-50 class represents data for the 40 curated samples in the ESC-50 dataset; the remaining three classes represent data
for 100 audio samples generated from each text-to-audio model.



Audio source Metric Normalized
Total Variance

ESC-50 dataset loudness 1.00
Stable Audio generated loudness 0.73
MMAudio generated loudness 0.66
AudioLDM 2 generated loudness 0.42
ESC-50 dataset pitch 1.00
Stable Audio generated pitch 1.69
MMAudio generated pitch 1.26
AudioLDM 2 generated pitch 1.12
ESC-50 dataset timbre 1.00
Stable Audio generated timbre 0.83
MMAudio generated timbre 0.67
AudioLDM 2 generated timbre 0.43

ESC-50 dataset mean 1.00
Stable Audio generated mean 1.08
MMAudio generated mean 0.86
AudioLDM 2 generated mean 0.65

Table 1: Summary of Output Variance

components that represent 95% of the variation in the pooled
dataset; 3) computed the trace of the covariance matrix of the
PCA-transformed data for each subset of interest to quantify
the total variance of the subset; and 4) normalized the total
variance value for each subset by the total variance of the
ESC-50 subset to scale the values to a reference.

If we look at the mean of these values over audio features
in Table 1, we can see Stable Audio has the most overall
variation, even surpassing ESC-50, which is then followed
by MMaudio and AudioLDM 2. The ranking of generative
models by total variation is maintained over all three au-
dio features. Interestingly, all of the generative models have
more variation in pitch than ESC-50, but less variation in
loudness and timbre.

Conclusions
We have carried out an exploratory analysis of the genera-
tive range of text-to-audio models by looking at generative
output variation for specific prompts, connecting this to the
expressive-range analysis methodology from the procedural
content generation (PCG) community.

One difference from much of the existing expressive
range analysis in PCG is that we do a analysis conditioned
on a prompt, treating “StableAudio with fixed prompt [x]”
as a generator, and then looking at this for different fixed
prompts. Much of the prior PCG work looks at the entire
generative space of a given generator; e.g., all possible lev-
els that a level generator can produce.

Why start with fixed prompts? The PCG systems to which
expressive range analysis is normally applied have tended
to produce artifacts that are more directly comparable with
each other, most commonly videogame levels (Smith and
Whitehead 2010; Hervé et al. 2023). The entire generative
space of a text-to-audio model is a jumble of all possible au-
dio – or at least whatever subset of all possible audio it has

successfully modeled – which is itself part of the problem
we wish to unpack.3 For example, music often has rhythm
and a scale in which it’s composed, while environmental
sound effects typically don’t. We believe it is more feasible
to start opening up the block box of this jumbled generative
space by digging in detail into specific parts of it. A text-
to-audio model with a fixed prompt (but not a fixed random
seed) is still itself a generator, with a generative space, and
can be analyzed as such.

In future work we are interested in the range of audio that
a given model can produce more generally, and how it re-
lates to the prompts, which are the main control mechanism.
For example, it would be interesting to know the expressive
range of a model’s output of thunder-like sounds in general,
not just those produced for the specific prompt thunder. One
could start by investigating prompt variations (“rolling thun-
der”, “dramatic thunder like in a Western film”, etc.); but
thunder sounds might also be found under other prompts that
don’t contain the word thunder verbatim.

In addition, the reverse is sometimes true: models vary
in prompt fidelity, and sometimes produce sounds that don’t
closely resemble the description in the prompt. Our sum-
mary metrics here quantify range and variation, but quanti-
fying expressive range based on dimensionality-reduced au-
dio features doesn’t distinguish the reasons for variation. For
example, a model that sometimes produces non-dog sounds
for the “sound of dog” prompt would appear to have an in-
creased expressive range, but probably not in the way that
a user looking for a diverse set of dog sounds would have
wanted. Untangling all these questions of prompt–audio re-
lationship would require different experiments.

Although we do present summary results for the gen-
erative range of three models on the ESC-50 dataset, our
primary goal is not to conclude that a given model is bet-
ter or worse, but to present a case study and outline of a
methodology for using expressive range analysis (ERA) as
an exploratory data analysis framework to understand text-
to-audio models. We believe that this is a useful way of
systematically thinking about the output of such models.
Specifically, we demonstrated two ways to construct ERA
metrics and diagrams.
• First, a bottom-up method that starts by listening to in-

dividual audio samples’ qualitative variations (here, of
thunder), and building from that to quantitative analyses
of generative output range on metrics suitable for that
particular type of audio and identified relevant features
(here, thunderclap timing and magnitude).

• Second, more of a big-picture shotgun approach that
starts by computing a battery of general-purpose audio
features such as pitch, loudness, and timbre on many
prompts, and visualizes them using dimensionality re-
duction based ERA plots (here, on the ESC-50 classes).
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