
An Interactive Game-Design Assistant

Mark J. Nelson
College of Computing

Georgia Institute of Technology
mnelson@cc.gatech.edu

Michael Mateas
Computer Science Department

University of California, Santa Cruz
michaelm@soe.ucsc.edu

ABSTRACT
Game-design novices increasingly hope to use game-like ex-
pression as a way to express content such as opinions and
educational material. Existing game-design toolkits such as
Game Maker ease the programming burden, bringing the
design of small games within the technical reach of low-
budget, non-expert groups. The design process itself re-
mains a roadblock, however: It is not at all obvious how to
present topics such as political viewpoints or bike safety in
a way that makes use of the unique qualities of the interac-
tive game medium. There are no tools to assist in that aspect
of the game design process, and as a result virtually all ex-
pressive games come from a small number of game studios
founded by experts in designing such games. We propose a
game-design assistant that acts in a mixed-initiative fashion,
helping the author understand the content of her design-in-
progress, providing suggestions or automating the process
where possible, and even offering the possibility for parts of
the game to be dynamically generated at runtime in response
to player interaction. We describe a prototype system that
interactively helps authors define spaces of games in terms
of common-sense constraints on their real-world references,
provides support for them to understand and iteratively re-
fine such spaces, and realizes specific games from the spaces
as playable mobile-phone games in response to user input.

INTRODUCTION
As games have become a hot cultural phenomenon, an in-
creasing number of game-design novices wish to express
desired content or accomplish a goal using game-like ex-
pression. The UCSC Expressive Intelligence Studio alone
receives several cold calls a month from advocacy and ed-
ucation groups who wish to build small serious games to
teach specific material or express a point of view, typically
with little to no budget. What is preventing these groups
from being able to build their games is not access to game
programming tools; there are now numerous game toolkits
such as Game Maker,1 as well as web technologies such as

1http://www.yoyogames.com/gamemaker/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
IUI’08, January 13–16, 2008, Maspalomas, Gran Canaria, Spain.
Copyright 2008 ACM 978-1-59593-987-6/ 08/ 0001 $5.00

Flash, that greatly ease the programming burden for creating
simple games.

Rather, the main roadblock is the game design process it-
self: the process of presenting desired content, such as bike
safety, the policy implications of a proposed law, or high
school algebra, in a way that makes use of the unique quali-
ties of the game medium. These unique qualities include cre-
ating a strong sense of player agency, procedurally express-
ing the possible-worlds implications of player decisions, and
enabling players to experientially explore rule systems.2 Ex-
isting game toolkits such as Game Maker or Alice3 provide
no help with the design problem of mapping content into a
system of game rules, but rather facilitate the programming
task of implementing the game rules once design is already
done. And indeed, we find that many games that deal with
sophisticated real-world referents, such as political games
and persuasive games, are produced by small studios studios
run by academics who are experts in expressive game de-
sign.4 We propose to build a tool to facilitate novice game
designers in the initial, creative design phase.

Our major goal is to create a creativity enhancing tool that
supports novice game designers in the creative practice of
expressing a desired content area (theme) in game form. The
purpose of such a tool is to help authors more quickly under-
stand the current state of a partial game design, and to auto-
matically suggest modifications or fill in design details. In
addition, a system that understood how to partially automate
the game-design process with input from the author could
be used more radically to do partial game design online dur-
ing actual gameplay. In that scenario, the author partially
specifies how the game can respond, and the game adapts
intelligently within those parameters to the person playing
the game, allowing the author to deploy automated game de-
sign as an element in her expressive arsenal.

2Mateas [15] and Bogost [4] discuss in more detail the particular
expressive affordances of procedural systems, and how they differ
from those of other media.
3http://www.alice.org/
4Some well-known examples are Madrid (http://www.
newsgaming.com/games/madrid/), a memorial game
released shortly after the 2004 Madrid train bombings, from a team
in which one author wrote his PhD thesis on the subject [8]; and
Food Import Folly (http://select.nytimes.com/2007/
05/24/opinion/20070524_FOLLIES_GRAPHIC.html),
an editorial game for the New York Times online opinion pages
about contaminated food imports, from a studio whose cofounder
wrote a book on the subject [4].

Proceedings of the 2008 International Conference on Intelligent User Interfaces (IUI), pages 90–98.

In this paper we present a prototype game-design assistant
as a first step towards that goal. This system helps an author
interactively define spaces of games in terms of constraints
on their real-world references. A space of games is some-
thing like, for example, “a game where an attacker chases a
target and the target tries to get away”—our focus initially is
on mapping thematic content into game spaces, not on rea-
soning about and generating abstract game rules. The author
specifies the nouns and verbs in the game, and defines con-
straints over real-world referents using the ConceptNet [13]
and WordNet [7] databases of common-sense knowledge.
Since these knowledge bases are large, yet incomplete (often
in unexpected ways), we help the author understand the im-
plications of their current design (as the system understands
it) as they add and modify constraints, and provide a way of
efficiently browsing through the databases to suggest useful
additions.

The author then provides mappings from the terms in their
game space to slots in templated stock games that are imple-
mented in literal executable code. Since the author-provided
constraints define a space of games rather than a specific
game, they allow for partial game-generation at runtime, con-
strained by the author’s goals. In our current prototype,
the author can either select a concrete game in which spe-
cific nouns and verbs that satisfy the constraints have been
mapped to a stock game, or can deploy the generative space
of games as specified by the constraints. In the latter case,
the player asks for a game about a specific noun and verb,
and games from the author-defined space of games are cho-
sen based on their similarity to the player’s request. The
specific game is then mapped to the stock executable im-
plementation by the author-defined mapping rules, and gen-
erated as a playable game. Of course in the long run we
would like to support an author in designing the game me-
chanics as well, but for now this approach allows us to focus
specifically on how to support an author in reasoning about a
game’s real-world references to produce a deployable game
that customizes those references in response to the player.

Finally, we demonstrate some examples of using our game-
design assistant to specify sensible game spaces that can be
mapped on to micro-games in the style of Nintendo’s War-
ioWare series. These are small games, typically lasting a
few seconds, that involve one simple element of gameplay
such as “dodge the car”. We choose this domain as an exam-
ple because its gameplay is simple enough to allow a focus
specifically on the real-world references rather than the game
mechanics, yet the space of possibilities is rich enough for
the series to be interesting to game designers [10].

FACTORING THE GAME-DESIGN PROCESS
To assist with and partially automate the game-design pro-
cess, we find it useful to factor it into several components.5
We’ve previously proposed [17] a model of game design that
uses four main interrelated components: the abstract game
mechanics that specify a game’s state and state evolution;
5Note that while we’d like this to be a plausible model of game
design, our focus is on a model useful for our purposes, not on
analyzing how human game designers actually operate.

the concrete game representation that specifies how these
abstract mechanics are represented to the player; the control
mappings that specify how the user interacts with the game
state; and the thematic content that comprises the game’s
real-world references.

A game’s abstract game mechanics specify an abstract game
state and how this state evolves over time, both autonomously
and in response to player interaction. In an typical arcade
game, abstract state would include things such as time lim-
its, health meters, player status, and so on. In a game like
chess, the abstract game mechanics are specified by the rules
of the game. Specific games make concrete design commit-
ments within more general spaces of games; for example,
chess is one particular set of rules for a symmetric, 2D, tile-
based game. In WarioWare games, the abstract mechanics
are usually a single rule, such as “avoid being hit for five
seconds”.

Concrete game representation specifies how the abstract me-
chanics are instantiated and represented to the player in a
concrete game world; that is, the audio-visual representa-
tion of the abstract game state. A time limit, for example,
might be represented as a literal clock on screen, by the po-
sition of some object on the screen, or even by the tempo
of the music. In WarioWare, one concrete representation of
the “avoid being hit for five seconds” abstract mechanic is
a dodging game in which the player has to move around in
a 2d top-down view and avoid getting hit. General knowl-
edge about representational strategies for different types of
abstract game states (and state transitions) constitutes a vi-
sual design space. Holding the abstract mechanics domain
constant while changing the game representation domain re-
sults in a new overall design space, such as taking a 2D,
third-person game and making a 3D, first-person version.

Thematic content comprises the real-world references ex-
pressed by the game. For example, the game Tapper takes
place in a bar, with beer glasses, customers, and so on; Di-
ablo takes place in a fantasy world with swords and mon-
sters; The Sims takes place in a suburban house; and a War-
ioWare dodging game might have a person on a road dodg-
ing cars. The thematic knowledge domain comprises the
common-sense knowledge about the real-world domain be-
ing expressed in the game. Holding the other domains con-
stant while changing the thematic content domain results in
a new overall design space, such as taking Tapper, a 2D
resource-management game set in a bar, and changing its
domain to a fast-food restaurant.

Finally, control mapping describes the relationship between
physical player inputs, such as button presses and joystick
movement, and modification of abstract game state. In Tap-
per, a bar-serving game, pressing a button at the tap begins
filling a mug, while releasing the button stops filling and, if
the mug is full, automatically slides it down the bar. Possible
alternative mappings for filling the beer might have included
repeatedly pumping the joystick back and forth, repeatedly
hitting a button, holding the joystick down for a specified pe-
riod of time, etc. (to say nothing of alternate physical control

91

mechanisms such as dancepads or gestural controllers).

Existing systems
Two lines of existing research aim to automate or assist with
videogame design in general. Game-design toolkits such as
Game Maker and Alice allow users to interactively define ob-
jects that should appear in the game, their appearance, and
how they should interact with each other. These tools gen-
erally provide “wizards” to automate certain common tasks,
such as defining how collision detection between pairs of
objects should work. Game-generation systems, meanwhile,
completely automate game design within a predefined space
of possibilities. For example, METAGAMER [20] generates
chess-like games, parameterized by user-tunable character-
istics such as locality of movement.

Understood in terms of our categories of game design, game-
design toolkits generally collapse abstract game mechanics
and concrete game representation, and then assist with spec-
ifying this unified mechanics/representation. The user spec-
ifies what objects will be on screen and how they’ll interact
with each other, which simultaneously specifies the mechan-
ics and how they’ll be represented. Control mappings are
then assigned directly to objects of the concrete representa-
tion by mix and matching certain stock sets of controls, e.g.
by assigning the arrow keys to control a particular object’s
position.

Existing automated game design systems hold some knowl-
edge categories of game-design fixed and focus their gener-
ation effort on variations within one or two of the remaining
categories. METAGAMER [20], for example, literally gener-
ates abstract game mechanics, producing as its output a set
of logical statements that define the rules for a chess vari-
ant. The concrete representation, control mappings, and the-
matic content aren’t specified, but are implicitly assumed to
be those traditional for chess, with some variations to ac-
count for, e.g., a different sized board or different kinds of
pieces. The author controls the process by varying a few pa-
rameters that summarize some aspect of the abstract game
mechanics, such as locality of movement. EGGG [18], mean-
while, takes a specification of abstract game mechanics as its
input, and from that generates a graphical, playable game.
It understands certain classes of games (chess-like games,
card games, etc.), each of which has the thematic content
hard-coded (e.g. the chess pieces), plus a set of general con-
ventions for concrete representations and control mappings
(e.g. how to represent a hidden hand of cards). The system’s
job is to adapt the set of representations and control map-
pings to the particular variation of abstract game mechanics
being specified. The author does not really control the pro-
cess in EGGG at all, except by what abstract mechanics she
feeds into it.

Both of these approaches focus almost exclusively on help-
ing the user define some or all of the abstract game mechan-
ics, their concrete representation, and the control mappings,
and provide no real assistance on how to design thematic
content into the game. When designing expressive games,
though, that’s precisely the difficult part: not figuring out

how to literally put some objects on screen, let the user click
on them, and define how they react to clicks or bounce off
each other, but thinking about how to make a game about,
say, contaminated food imports, that makes sense and effec-
tively conveys an opinion.

Our goal is to combine the incremental, interactive design
supported by game design toolkits with the intelligent sup-
port of a game generation system. Game-generation systems
automate parts of the game design process, but do so in a
very non-interactive way: The user specifies some parame-
ters, and then a game is generated. Revising a game consists
of trying out some new parameters and looking at the re-
sult again. Game-design toolkits, on the other hand, provide
much richer interaction to support incremental game design
and revision, but rarely supply much (if any) intelligent au-
tomation or feedback; the “wizards” that automate certain
common tasks generally do so just by allowing the author
to mix and match a few common bundles of code, such as
different kinds of collision detection.

An ideal system
We propose that a game-design assistant ought to support
mixed-initiative interaction, in which the user carries out in-
teractive, incremental game design and revision, but with the
system using its understanding of the game-design process
and the partial game design that’s been specified so far to
provide design suggestions and help the user understand the
implications of various design decisions.

The system’s interaction would serve two main purposes:
First, to give feedback to the author on the state of their cur-
rent design; and second, to suggest modifications, additions,
and so on in an intelligent way. Like current game-design
wizards it ought to include some stock resources, but from
all the different components of game design (theme, abstract
mechanics, etc.), rather than only stock elements for low-
level concrete mechanics such as collision detection. For
example, an author building a game to highlight some point
about economic policy through a simulation could start with
a set of generic resource-balancing game mechanics.

Feedback would be useful to short-circuit the usual code-
compile-playtest cycle. If the design-support system had
sufficient knowledge of the current design it could, for ex-
ample, quickly play through with even a simple simulated
player and spit out some screenshots of notable points in the
game, allowing the author to glance and see if something
was happening that they weren’t expecting. More explicitly,
the author could be warned of things such as unreachable
parts of the game.

Our prototype
In our prototype system, we aim to combine generation and
interactive design, and to focus on the problem of mapping
thematic content onto game mechanics. The three main com-
ponents of our system are game spaces, which define a space
of possible games such as a game where one entity tries to
avoid another entity; stock mechanics, which are literal game
code with templated slots; and mapping rules, which spec-

92

Figure 1. Two mappings of a game from the attacker-avoidance game
space in which a duck avoids a bullet.

ify how a game space should map onto a stock mechanic to
render a specific game within the space playable.

The game spaces are primarily thematic, but also include
some assumptions about how the abstract mechanics would
operate. For example, a game with one entity avoiding an-
other has two entities (the avoider and the attacker), which
must be chosen so that it “makes sense”, in terms of common-
sense knowledge, that one would be avoiding the other. This
thematic content comes with an assumption that the game
itself, however implemented, will involve a mechanic where
the avoider tries to get away, and wins if successful, or loses
if caught.

The stock mechanics are bundles of both abstract and con-
crete game mechanics that specify a fully playable game but
with templated slots for some entities in the game. For ex-
ample, one of our WarioWare-style mechanics (which we
call Dodger) has one object moving across the screen, while
another object that the player controls moves up or down
quickly to get out of its way, as shown in Figure 1 (left).

Finally, the mapping rules ensure that the abstract-mechanic
assumptions that are implicitly part of a game space are re-
spected, by mapping the game space onto stock mechanics
in such a way that the common-sense thematic constraints
are preserved. For example, Figure 1 shows two different
ways in which a game about a duck avoiding a bullet can
be mapped onto two different stock mechanics. In the game
shown on the left, the avoider (a duck) is mapped onto an
avatar that the player moves up and down, while the attacker
(a bullet) is mapped onto a computer-controlled sprite that
moves left across the screen towards the player. In the game
shown on the right, the the avoider (a duck again) is mapped
onto a computer-controlled sprite that moves randomly, and
the player controls crosshairs to play the role of the attacker
(a bullet again), which isn’t explicitly shown. These exam-
ples of mappings are straightforward one-to-one mappings,
but more complex mappings can also be constructed, where
for example animate and inanimate objects map differently,
and other parts of the game are changed based on properties
of the specific terms being filled into the slots.

In our example WarioWare domain we’ve so far defined three
game spaces that map onto five sets of stock mechanics [17].
The three game spaces are an attacker-avoidance game, a
reservoir- or meter-filling game, and an acquisition game.
The five stock mechanics are Dodger, which shows a side
view in which a player dodges an incoming object; Shooter,
which shows a target crosshair the player uses to shoot an
object; Pick-Up, in which the player runs through a maze to
pick up an item; Pump, in which the player button-mashes
to raise a meter; and Move, in which a player button-mashes
to move across the screen. We’ll use the attacker-avoidance
game space as a running example.

Once a game space is defined, a constraint-solving backend
finds possible specific games that fit in the space, guided
by input from the player. In our prototype, the player is
asked for a noun and verb, and then given a sequence of
microgames where the terms are filled in based on similarity
to their requested noun and verb (as measured by distance in
the WordNet hierarchy). The specific game from the game
space is then mapped onto one of the stock mechanics based
on mapping rules specified by the author. In our current ex-
amples these are straightforward one-to-one mappings; for
example, an attacker-avoidance game maps onto a Dodger
stock mechanic by putting the avoider as the entity that’s
dodging (and controlled by the player) and the attacker as
the thing to dodge. The filled in stock mechanic is then
compiled and a custom playable game for the mobile Java
platform is generated.

We focus in this paper on the authorial process of defining a
game space. A full system would support the author in defin-
ing and mixing and matching interesting mappings to stock
mechanics, and provide support for modifying and reason-
ing about the mechanics themselves, rather than restricting
the author to a set of stock mechanics.

DEFINING GAME SPACES VIA CONSTRAINTS
The author in our system defines a game space by specify-
ing variables, which are marked as nouns or verbs, and con-
straints on the variables. The constraints are either on the
values that individual variables can take, or on how the val-
ues of multiple variables must relate to each other. The au-
thor may specify the constraints using relations in the Con-
ceptNet [13] and WordNet [7] databases, as well as some
combinations of the two and logical operators like and and
or. Figure 2 shows the set of variables and constraints speci-
fying an “avoid” game, where one noun avoids another noun,
which we’ll use as an example. Note that a user of the in-
teractive tool need never see this raw game description; see
Figure 3 for the graphical view.

ConceptNet and WordNet
ConceptNet is a graph-structured common-sense knowledge
base extracted from OpenMind [22], a collection of semi-
structured English sentences expressing common-sense facts
gathered from online volunteers. ConceptNet’s nodes are
English words or phrases, and its links express semantic rela-
tionships such as (CapableOf “person” “play video game”).
In our current prototype, CapableOf, CapableOfReceivin-

93

noun Avoider
noun Attacker
verb Attack_verb: shoot, attack, damage, chase, injure, hit
constraint: (ConceptNet CapableOfReceivingAction ?Avoider ?Attack_verb)
constraint: (WordNet hyponym ?Avoider "animate thing")
constraint: (or (and (WordNet hyponym ?Attacker "projectile")

(ConceptNet CapableOfReceivingAction ?Attacker ?Attack_verb))
(ConceptNet CapableOf ?Attacker ?Attack_verb))

Figure 2. A definition of an example game space, specifying games where an Avoider avoids an Attacker. See text for explanation, and Figure 3 for
the graphical view of this game space.

gAction, PropertyOf, and UsedFor are the most useful re-
lations.

WordNet is a hierarchical dictionary of English words. A
word below another one in the hierarchy is a specialization
of the higher-up one (the higher word is a “hypernym” and
the lower one is a “hyponym” if a noun or “troponym” if
a verb). This can be used to constrain variables in a game
space to specific types of words; for example, constraining a
noun to be a hyponym of “animate object” makes sure that
inanimate objects aren’t put into the slot of a stock mechanic
where they wouldn’t make sense. More generally, WordNet
allows us to perform taxonomic generalizations over rela-
tions defined in ConceptNet.

Compared to more formally specified common-sense knowl-
edge bases such as Cyc [11] and ThoughtTreasure [16], these
databases use natural language and relatively loose seman-
tics. This is nice because it allows an author to interact with
the databases without having to learn how to navigate a par-
ticular formal ontological framework in order to define their
game spaces. In addition, ConceptNet’s natural-language
approach to common-sense knowledge has been useful for a
number of previous applications [12]. However, having the
knowledge base in natural language does have some draw-
backs when it comes to ambiguity and inability to usefully
respond to complex queries, and indeed, helping an author
navigate these difficulties is one of the main goals of our in-
teractive approach to defining common-sense constraints.

ConceptNet has the more serious drawback of weak cover-
age: it knows that a duck can be shot, but not that a pheasant
can be shot, for example. Fortunately, combining queries
to ConceptNet with hierarchical information from WordNet
mitigates this problem to a large extent. In specifying a par-
ticular ConceptNet constraint, the author can specify whether
WordNet “inheritance” should be performed on any of the
terms or variables in either direction (towards more general
or towards more specific words). For example, the query
about whether a pheasant can be shot should have hypernym
(towards more general terms) inheritance enabled on “pheas-
ant”, and would therefore return true, because from WordNet
we find that a pheasant is a type of animal, and ConceptNet
knows that animals can be shot.

Example: An attacker-avoidance game space
Figure 2 shows an example game space specifying games
where an Avoider tries to avoid an Attacker. The game space

is defined by three variables—those two nouns plus a verb
(Attack verb)—and several constraints between them.

The nouns can implicitly range over any noun for which the
system has graphics, subject to the constraints. The verb
is specified to be one of five verbs that the author has cho-
sen as representative of the type of action to take place in
the game. The constraints specify how to bind these vari-
ables to specific terms from ConceptNet so as to maintain
the common-sense semantics of “attack” and “avoid”.

The first constraint specifies that the Avoider has to be ca-
pable of serving as the direct object of the Attack verb (rep-
resented by the CapableOfReceivingAction relation in Con-
ceptNet); hypernym inheritance is done on the Avoider (not
shown in the figure for simplicity). The second constrains
the Avoider to being an “animate thing”, since it must move
to avoid the Attacker. Some inanimate things could sensi-
bly function as Avoiders, especially humorously (a piece of
bread trying to avoid a toaster, say), but specifying which
of them makes sense gets trickier, so in this example we as
the authors have simply decided to limit the game space to
consider only animate things as Avoiders.

The third constraint is somewhat more complex. The most
obvious constraint to add is that the Attacker must be Ca-
pableOf the Attack verb (with hypernym inheritance on the
Attacker). After trying this, however, it turns out to preclude
many games that we think of as canonical in the avoider
game design space. Something trying to avoid a bullet, for
example, is excluded because a bullet isn’t itself CapableOf
“shoot”: A bullet doesn’t shoot, but is shot, and therefore
isn’t CapableOf, but rather CapableOfReceivingAction shoot.
We informally except it to serve in the role of attacker and
perhaps anthropomorphize it as “chasing” the Avoider, but
those notions are too subtle for the common-sense databases
that currently exist to capture. To take these cases into ac-
count, we’ve added an alternate possibility for fulfilling the
last constraint: If an Attacker is a projectile (according to
WordNet), then we check whether the Attack verb can sen-
sibly act on it, rather than whether it can sensibly act out the
Attack verb.

Specific games in this game space are then mapped by author-
specified rules to either of two sets of stock mechanics. Fig-
ure 1 shows two example mappings of a game where a duck
avoids a bullet. In one case, the player plays the duck and
avoids an incoming bullet in a side-scrolling mechanic; in

94

Figure 3. The graphical view of the attacker-avoidance game space specified in Figure 2.

the other, the player plays the implicit shooter of a bullet,
and aims at the duck using a cross-hair targeting mechanic.

Providing a mechanism for specifying variables and con-
straints is not enough to support an author in the thematic
mapping of game content. Given the vast size yet lack of
completeness of common-sense knowledge bases, a game
space defined by a given set of constraints will often pro-
duce counterintuitive results, including concrete games that
the author doesn’t expect, while excluding games the author
might think are canonical in the game space. Thus an in-
telligent game authoring tool must support the author in dy-
namically exploring a game space, allowing her to ask the
system why a given generated game is allowed by the cur-
rent constraints and to iteratively modify constraints. In fact,
it is this iterative exploration that is the heart of the leverage
provided by an intelligent game design tool; the combina-
tion of human plus system can explore a much larger de-
sign space than an unaided human could, while the human
provides heuristic search guidance that would be extremely
difficult to encode in a fully automated system.

INTERACTIVELY DEFINING GAME SPACES
The interface for specifying game spaces centers around a
graph-structured view of the variables and constraints defin-
ing a game space, with a number of tools for querying and
modifying it. Figure 3 shows the constraint graph for the ex-
ample attacker-avoidance game whose raw textual specifica-
tion was shown in Figure 2. Variables and constraints can be
added or removed interactively (the constraint-satisfaction
backend re-runs in the background after modifications are
made). Some filtering is done in the interface so that only
relevant additions are shown; for example, an author select-
ing two nouns and clicking to add a constraint will only get a
list of constraint types relevant for pairs of nouns, which ex-
cludes those such as ConceptNet’s CapableOf that involve
verbs.

An author can query a particular variable to get a list of terms
that could be bound to that variable when generating a real
game, under some binding of other nouns and verbs in the

game space. More helpfully, she can click on a particular
word to get an explanation of why it satisfied the constraints.

Figure 4 shows an example from an earlier iteration of our
attacker-avoidance game space. Before we tried “projec-
tile” in the third constraint (see Figure 2 and previous dis-
cussion), we had tried “device”; the idea was that it would
be nice if objects other than traditional projectiles could be
used as projectiles anyway, like a hammer being thrown at
the avoider. Upon adding that option, though, we got a game
with a piano flying across the room, which, without some
sort of context that wasn’t present in this simple game space
(say, a gorilla shown as throwing the piano at the player),
didn’t make much sense. The view in Figure 4 quickly lets
the author click “Why?” to find out why: a piano is a both
a device (according to WordNet) and CapableOfReceivin-
gAction “hit” (according to ConceptNet), so fits all the con-
straints. Presumably a piano is a device for making mu-
sic, and its keys can be hit, which isn’t really what we had
intended those constraints to mean. It’s possible that we
could’ve refined the constraints further to allow some non-
projectile devices while excluding others; we chose the al-
ternate solution of limiting “device” further to “projectile”.
In an earlier, fully automated version of the system, we had
to manually dig through debug output and trace through the
ConceptNet and WordNet graphs in order to figure out why
we were getting unexpected results such as this. This painful
manual process was one of the motivations for moving to-
wards an interactive game design assistant supporting visual
exploration of game spaces.

To get a bigger-picture view of how all the variables and con-
straints in a game space interact, the author can get a list of
some possible complete games; Figure 5 shows an example.
The author can click on any particular term in this list to get
an explanation as well. To provide a visual overview, we can
also show the author a set of graphical screenshots of some
of the concrete games in the game space, based on the sep-
arately defined game space to stock mechanic mappings, on
which she can click to get textual description of the values
filled in for the variables.

95

The overall purpose of the interface is to make it possible
for an author to efficiently use specific examples of games
that do or don’t fit her goals for the game space (or make
sense at all, for that matter) in order to reason about gen-
eral rules specifying what games should be included in and
excluded from the space. To deploy a game, the author
has two choices. If she wishes to deploy one or more con-
cretely instantiated games, she can select concretely instan-
tiated games from the examples generated by the system. In
this case, the authoring system is serving as a “brainstorming
assistant”, providing help in performing thematic mapping
onto game mechanics, and helping her to explore a larger de-
sign space than she might have been able to unaided. If she
wishes to deploy a generative design space, in which games
are generated at runtime as the player plays them, she can
deploy a fully-automated version of the system, where the
game spaces (variables + constraints) have been iteratively
refined during authoring. In this case, the authoring system
is helping the author to visualize game design spaces, and
to refine constraints until the game space(s) reliably produce
the author-desired range of games.

People often find it more intuitive to define categories by
specifying prototypes rather than logical rules [21]. In recog-
nition of that fact, some systems try to infer constraints from
examples demonstrated by users, rather than requiring the
users to specify explicit constraints; for example the graph-
ical editor GRACE infers constraints on the relationships be-
tween elements of the design (e.g. in a CAD diagram) by
user demonstration and some inference heuristics [1]. Those
approaches succeed in domains where the constraints are
simpler and more concrete, however. In the game-design do-
main, the state of common-sense reasoning isn’t sufficiently
advanced for us to reliably infer something like “a game
about avoiding an attacker (where the attacker and avoider
and their relationships ‘make sense’)” from some examples
of games that should and shouldn’t be in that space.

Rather than inevitably getting inferences from prototypes
wrong, we try to help the author understand the constraints
they’re in the process of specifying—and in particular to un-
derstand what the system thinks the constraints they’re spec-
ifying mean—by frequent reference to prototypical exam-
ples.6 The goal is to make failures of common-sense reason-
ing explicitly visible so the author can recognize and work
around them, helping the author to define an explicit set of
rules that can be applied concretely and that are congruent
with her goals. We hope this incorporates some of the in-
tuitive advantages of a prototype approach without relying
on inferences that, in the common sense domain of thematic
mapping onto game mechanics, would be unreliable and re-
sult in confusion.

OTHER RELATED WORK
While research on game generation and game-design wiz-
ards is most directly related to our work, there are several
additional lines of related work.
6For the moment we don’t explicitly choose examples to be proto-
typical; in future work it may be useful to identify examples that
serve as particularly good prototypes.

Figure 4. Possible assignments to a particular variable, letting us look
for unexpected results and query why they satisfied the constraints.

Figure 5. Possible assignments to all variables, showing a more contex-
tual view of assignments than the single-variable view in Figure 4. The
author can query particular assignments here as well.

Constraint-based approaches have been used to define “de-
sign spaces” for tasks such as designing buildings or user
interfaces, or even composing contrapuntal music. Either
an AI system or a person guided by the constraints then
searches for solutions within these spaces [6, 1, 5, 19]. In
these systems, however, both the constraints and the inter-
active exploration of the design space serve rather different
purposes than in our system. In constraint-based design, the
constraints are typically design parameters specifying what
a system ought to do, such as load factors on structural com-
ponents, required functionality of a user interface, or the
rules of contrapuntal music. Interactive navigation in such
systems is designed to help a designer explore within the
space defined by those invariants; for example, to compose a
particular piece of contrapuntal music while adhering to the
constraints of that type of composition [19].

In our system, by contrast, constraints are a means to al-
low authorial expression while still retaining some degree

96

of freedom that the system can use online to customize the
games to a player’s input: The author is expressing some de-
sired invariants, rather than working subject to them. The in-
teractive design process is therefore intended to help the au-
thor reason about the constraints themselves in order to help
her understand the current design space, and decide whether
to add, remove, or revise constraints to modify it. This does
have more similarity to the graphical editor GRACE, which in-
fers constraints by demonstration and explains to users what
constraints were inferred and why. Our focus is somewhat
different, since we don’t infer constraints automatically, but
instead focus on explaining the effects of the existing set of
constraints and how they might operate and interact in unex-
pected ways.

Allowing an author to partially specify a game which is then
fleshed out into a specific complete game at runtime in re-
sponse to player interaction shares some similarity with par-
tial programming [2, 3]. However, partial programming is
task-oriented, designed to allow an author to specify a par-
tial solution to a problem while marking parts of the pro-
gram for the system to adapt online in response to specific
situations, generally using statistical machine learning tech-
niques. Since our partial specifications are meant as a tool of
authorial expression rather than as a way of making it easier
to write programs that accomplish functional tasks, both the
motivation and technical details of our approach differ [14].

There is some similarity between our authorial support tool
and interactive knowledge acquisition tools. Helping an au-
thor specify a space of games can be seen as acquiring knowl-
edge about game design, and so the design issues overlap
somewhat with knowledge acquisition systems. We incor-
porate some suggestions from the literature on the use of
tutoring-style interaction in knowledge acquisition [9]. Rather
than merely passively allowing an author to specify their
ideas about game design, we aim to provide frequent reflec-
tion back to the author of what the system thinks it’s learned
about the author’s ideas thus far, in the form of example
games generated with the current set of constraints, and ex-
planations of why they fit those constraints. ComicKit [23]
also uses ConceptNet to facilitate knowledge acquisition,
though it does this in the form of one-shot suggestions that
complete user-entered partial scripts, rather than offering it-
erative reflection over the consequences of the currently en-
tered knowledge.

CONCLUSIONS AND FUTURE WORK
We propose a game-design assistant to help authors with the
full game design process, not only with the implementation
process that current tools assist with. We propose that such
a system should support the following three tasks. First, it
should help authors understand the state of a partial game
design, reflecting back to them what the system understands
about the current design so the authors can more easily find
inconsistencies and design flaws. Second, it should suggest
modifications or automatically fill in design details, both to
help novice designers and to make the process less tedious.
Finally, it should provide support for some automatic design
to be pushed into the run-time game itself in ways speci-

fied by the author, for example to allow games to customize
themselves to particular players.

Our prototype system focuses on a subset of this goal. It al-
lows authors to define thematic “game spaces”, that is, the
space of real-world references a game can make, by speci-
fying sets of nouns and verbs that comprise the abstract en-
tities and action in the game, and constraints on how these
entities must relate to each other to create a game that’s both
sensible and in the intended space. The constraints are speci-
fied in terms of the ConceptNet and WordNet common-sense
databases. Our system focuses primarily on helping the au-
thors to understand the current state of their design by au-
tomatically generating example games in the game space,
and supporting the author in iteratively modifying the game
space.

With respect to the full set of desiderata for a game-design
assistant, our prototype can be seen in two ways, depend-
ing on how the game spaces are deployed to the player. A
game space can be deployed as an author-defined space of
possible variation, within which specific games are gener-
ated at run-time based on player interaction. In this view,
our author-support tool works to help the author understand
their design-in-progress, and to reason about how automatic
design/customization will operate when it’s pushed into the
run-time game.

Alternately, a game space can encode knowledge about de-
signing a particular type of game (something more specific
than a game genre), within which specific games would be
designed by novice authors. In that view, defining game
spaces is part of building the knowledge that should go into
a game-design assistant, and would be done by people with
some knowledge of game design. A novice designer could
then use a tool with many of these game spaces already
predefined and would explore specific designs within those
spaces. Should that prove too limiting past a starting point,
they could then escape back into something like the the tool
described in this paper to understand and edit the “meta-
level” of game spaces rather than treating them as fixed.

Other future improvements can take place along a number
of avenues. We currently have simple mappings from game
spaces to stock game mechanics. An author-support inter-
face to allow more complex mix-and-matching between game
spaces and mechanics would allow for more easily defining
interesting new types of games. More fundamentally, re-
moving the “stock” in the stock mechanics and allowing it-
erative and interactive design of the game mechanics them-
selves would get us much closer to our ultimate goal of a
game-design system that supports the author in all aspects
of the game-design problem.

Our system also currently focuses on giving feedback to the
author on their design so they understand how common-
sense reasoning operates or fails to operate. There is plenty
of room for more in the way of constructive suggestions.
Expert game designers draw on a wide range of common
game-design tropes; a system might help guide a novice

97

game-designer by helping them apply such tropes as neces-
sary. Starting with a set of expert-defined game spaces is one
way to encode such knowledge at the level of full, abstracted
game designs that an author can start from, but it would also
be useful for the system to have knowledge of finer-grained
tropes, perhaps suggesting additions from a database that are
filtered for applicability to the current partial design.

Finally, we’ve only scratched the surface of possible ways
an author might want to push dynamic generation into the
actual deployed game so that it can be customized by or react
intelligently to a specific player.

ACKNOWLEDGMENTS
Thanks to Nuri Amanatullah, Thib Guicherd-Callin, Jeremy
Hay, and Ian Paris-Salb (UC Santa Cruz) for developing a
package to implement WarioWare-like games on the Java
mobile platform; and to Chaim Gingold (Maxis) for suggest-
ing WarioWare-like games as an interesting domain. This re-
search was supported by grants from Intel and from the Na-
tional Science Foundation’s Graduate Research Fellowship
Program.

REFERENCES
1. S. R. Alpert. Graceful interaction with graphical

constraints. IEEE Computer Graphics and
Applications, 13(2):82–91, 1993.

2. D. Andre and S. Russell. Programming reinforcement
learning agents. In Advances in Neural Information
Processing Systems (NIPS), 2000.

3. S. Bhat, C. L. Isbell, Jr., and M. Mateas. On the
difficulty of modular reinforcement learning for
real-world partial programming. In Proceedings of the
21st National Conference on Artificial Intelligence
(AAAI), 2006.

4. I. Bogost. Persuasive Games: The Expressive Power of
Videogames. MIT Press, 2007.

5. A. Borning and R. Duisberg. Constraint-based tools for
building user interfaces. ACM Transactions on
Graphics, 5(4):345–374, 1986.

6. B. Chandrasekaran. Design problem solving: A task
analysis. AI Magazine, 11(4):59–71, 1990.

7. C. Fellbaum, editor. WordNet: An Electronic Lexical
Database. MIT Press, 1998.

8. G. Frasca. Play the Message: Play, Game and
Videogame Rhetoric. PhD thesis, IT University of
Copenhagen, 2007.

9. Y. Gil and J. Kim. Interactive knowledge acquisition
tools: A tutoring perspective. In Proceedings of the
24th Annual Conference of the Cognitive Science
Society, 2002.

10. C. Gingold. What WarioWare can teach us about game
design. Game Studies, 5(1), 2005.

11. D. B. Lenat. CYC: A large-scale investment in
knowledge infrastructure. Communications of the
ACM, 38(11):33–38, 1995.

12. H. Lieberman, H. Liu, P. Singh, and B. Barry. Beating
common sense into interactive applications. AI
Magazine, 25(4):63–76, 2004.

13. H. Liu and P. Singh. ConceptNet: A practical
commonsense reasoning toolkit. BT Technology
Journal, 22(4), 2004.

14. M. Mateas. Expressive AI: A hybrid art and science
practice. Leonardo, 34(2):147–153, 2001.

15. M. Mateas. Procedural literacy: Educating the new
media practitioner. On the Horizon, 13(1), 2005.

16. E. T. Mueller. Natural Language Processing with
ThoughtTreasure. Signiform, 1998. Online:
http://www.signiform.com/tt/book/.

17. M. J. Nelson and M. Mateas. Towards automated game
design. In AI*IA 2007: Artificial Intelligence and
Human-Oriented Computing, pages 626–637. Springer,
2007. Lecture Notes in Computer Science 4733.

18. J. Orwant. EGGG: Automated programming for game
generation. IBM Systems Journal, 39(3–4):782–794,
2000.

19. R. Ovans and R. Davison. An interactive
constraint-based expert assistant for music
composition. In Proceedings of the 9th Canadian
Conference on Artificial Intelligence, 1992.

20. B. Pell. Metagame in symmetric, chess-like games. In
L. V. Allis and H. J. van den Herik, editors, Heuristic
Programming in Artificial Intelligence 3: The Third
Computer Olympiad. Ellis Horwood, 1992.

21. E. Rosch. Natural categories. Cognitive Psychology,
4:328–350, 1973.

22. P. Singh. The public acquisition of commonsense
knowledge. In Proceedings of the AAAI Spring
Symposium on Acquiring (and Using) Linguistic (and
World) Knowledge for Information Access, 2002.

23. R. Williams, B. Barry, and P. Singh. ComicKit:
Acquiring story scripts using common sense feedback.
In Proceedings of the 10th International Conference on
Intelligent User Interfaces (IUI), pages 302–304, 2005.

98

