
An earlier version of this paper appears in: H.J. van den Herik and L.V. Allis, editors,

Heuristic Programming in Artificial Intelligence 3 – The Third Computer Olympiad.

Ellis Horwood, 1992.

METAGAME in Symmetric
Chess-Like Games

Barney Pell1

University of Cambridge

Cambridge, UK
E-mail: bdp@cl.cam.ac.uk

Abstract

I have implemented a game generator that generates games from a

wide but still restricted class. This class is general enough to include

most aspects of many standard games, including Chess, Shogi, Chinese

Chess, Checkers, Draughts, and many variants of Fairy Chess. The gen-

erator, implemented in Prolog, is transparent and publicly available, and

generates games using probability distributions for parameters such as

piece complexity, types of movement, board size, and locality.

The generator is illustrated by means of a new game it produced,

which is then subjected to a simple strategic analysis. This form of anal-

ysis suggests that programs to play Metagame well will either learn or

apply very general game-playing principles. But because the class is still

restricted, it may be possible to develop a naive but fast program which

can outplay more sophisticated opponents. Performance in a tournament

between programs is the deciding criterion.

1Parts of this work have been supported by RIACS, NASA Ames Research Center [FIA],

and a British Marshall Scholarship.

1

1 Introduction

As discussed in a companion paper ([Pel92]), the idea of Metagame is to de-

velop programs which can take as input the rules of any game within a well-

defined class, and play these games against opponents. Since the games are

produced by a game generator, which has statistical components, the develop-

ers of the programs can no longer focus on a specific set of rules, and instead

are forced to represent their knowledge to a program in a general fashion.

The goal is that the programs will perform much of the interesting analysis of

particular games, traditionally performed by humans.

Eventually, we would like to see programs which can analyse and play any

games that humans could play. But for the moment, a smaller step is to gen-

eralise a set of games which have already been the subject of much research in

computer game-playing, so that we can possibly transfer some of our current

game-specific methods to a more general problem.

To this end, I have defined a class, symmetric chess-like games, which cap-

tures most aspects of many common games such as Chess, Checkers, Chinese

Chess, and Shogi,2 and represents these games in a manner which preserves

much of their spatial structure. I have also implemented a generator for this

class, based on a set of parameters such as piece complexity, the degree of

crowding on the initial board (what fraction of the board begins with pieces),

and the amount of decisions the players get to make throughout the game.

Finally, I have developed a move grammar, which can be used by humans and

programs to communicate moves for any game within this class.

This paper discusses the various components in detail. Section 2 discusses

the class of symmetric chess-like games. Section 3 discusses the move grammar

for this class. Section 4 discusses the game generator. Section 5 discusses a

new game produced by the generator, and provides an analysis of this game by

the author. Section 6 concludes the paper by discussing whether Metagame is

beyond the state of the art.

2 Symmetric Chess-Like Games

Informally, a symmetric chess-like game is a two-player game of perfect infor-

mation, in which the two players move pieces along specified directions, across

rectangular boards. Different pieces have different powers of movement, cap-

ture, and promotion, and interact with other pieces based on ownership and

piece type. Goals involve eliminating certain types of pieces, driving a player

out of moves, or getting certain pieces to occupy specific squares. Most impor-

tantly, the games are symmetric between the two players, in that all the rules

can be presented from the perspective of one player only, and the differences

2This paper mentions several games which may be unfamiliar. Descriptions of these games

can be found in ([Bel69]).

2

in goals and movements are solely determined by the direction from which the

different players view the board.

In what follows, we describe this class of games formally. For a full gram-

mar in which games in this class are defined, see Appendix A.

At the highest level, a game consists of a board, a set of piece definitions,

a method for determining an initial setup, and a set of goals or termination

conditions. Each of these components is defined from the perspective of the

white player, who initially places his pieces on the half of the board containing

ranks with the lower numbers (call this white’s half of the board). Unless they

can move both forward and backward, white’s pieces are generally forced to

move toward black’s side of the board, and vice-versa, which implies that there

must be an inevitable point in the game when these opposing forces come into

contact.

2.1 Definitions

Before we can describe the rules, we need a few definitions.

A boardB is a two-dimensional rectangular array [1 : :X

max

; 1 : : Y

max

], where

X

max

and Y

max

are the number of files and ranks, respectively.3

Each element of B is a square, an ordered pair which is denoted by its

position in this array: (x; y).

A direction-vector (d-v), hdX; dY i is a function which maps a square (X;Y)

into a square (X + dX; Y + dY). If dY > 0, this is a forward d-v, and if dX > 0,

this is a rightward d-v.

A directional symmetry is a function which maps one d-v to another d-v.

We define three special symmetries:

forward : hdX; dY i 7! hdX;�dY i

side : hdX; dY i 7! h�dX; dY i

rotate : hdX; dY i 7! hdY; dXi

A symmetry set, SS, is a subset of fforward,side,rotateg.

The inversion, I, maps one square to another square, and maps one d-v to

another d-v:

I : (x; y) 7! (X

max

� x+ 1; Y

max

� y + 1)

hx; yi 7! h�x;�yi

Applying the inversion to a square or d-v thus produces the corresponding

square or d-v from the perspective of the other player.

A symmetric closure, SC(SS;D) of a d-v D under a symmetry set SS, is

defined inductively as follows:

1. D 2 SC(SS;D)

3Ranks and files correspond to rows and columns, respectively.

3

2. S 2 SS ^D

1

2 SC(SS;D) �! S(D

1

) 2 SC(SS;D)

3. Nothing else is in SC(SS;D)

Thus, a symmetric closure of a direction vector under a set of symmetries is

the set closure obtained by applying these symmetries to the direction vector.

If the symmetry set contained all three symmetries, then applying this set

to direction h1; 2i would yield all eight possible directions of a knight move in

Chess. Keeping only the side symmetry would yield the two possible moves of

a Shogi knight (h1; 2i and h�1; 2i).

2.2 Global Symmetry

As symmetric chess-like games are totally symmetric, it is possible to present

the entire set of rules (movements, capturing, initial setup, and goals) from

the perspective of one player only, which can then be translated to the per-

spective of the other player by applying the inversion I to every square and

d-v mentioned in these rules. In what follows, then, we define the rules only

for the forward-moving player, illustrated by the white player in Chess.4

Thus, if the movement of a white piece of a certain type involves a direction

vector D, then the corresponding movement of the black piece of that type will

involve instead the vector I(D). Similarly, if white’s goal is to have his knight

arrive at a given square SQ, then black’s goal will be to have his knight arrive

at I(SQ). The same holds for promotion ranks, as will be discussed in the next

section.

An interesting effect of this global symmetry is that it allows the genera-

tor to produce rules from the perspective of only the white (forward moving)

player, and the global symmetry automatically implies that white pieces travel

forward and to the right, and black pieces travel backward and to the left (from

white’s perspective), so that by default, opposing forces tend to move toward

each other. If a piece movement has both a forward and a side symmetry,

however, then the piece will travel along the same direction vectors for both

players, because the inversion of a direction vector is precisely the same as

the result of applying a forward and then a side symmetry to this vector.5

2.3 Board

The dimensions of a board are declared by the statement: SIZE X

max

BY Y

max

.

4Epstein ([Eps89]) uses the terms player and opponent to refer to the two players in a game.

We shall here use these terms indexically, such that player refers to whichever player is to

move.

5It is thus possible to characterise the degree of symmetry in a particular game by the

extent to which movements are invariant under inversion. For example, Chess is almost
totally symmetric (every piece except pawns has all three symmetries), while Shogi is much

less so.

4

qS0lbZqZ

Z0Z0Z0Z0

0Z0Z0Z0Z

Z0Z0Z0Zr

0M0o0Z0Z

Z0O0ZNZ0

0Z0Z0Z0Z

lRZ0l0l0

Figure 1: A vertical-cylinder board and capture movements

A board has one of two types: planar and vertical-cylinder. The planar

board is the standard one used in almost all board games. The vertical-cylinder

board is like the planar, but the left and right sides of the board are connected

to each other so that pieces can wrap-around the side of the board.6 Formally,

for vertical-cylinders,

d-vhdx; dyi : (x; y) 7! ((x+ dx� 1) mod (X

max

) + 1; y)

For example, in Figure 1, the Nb4 can capture the rh5.

A board also has a privileged rank, called the promotion rank, such that any

piece which, as a result of movement, arrives at or past this rank at the end of

a turn must then exercise its promotion power, if it has one (see Section 2.4.4).

If this rank had value 6 on a board consisting of 8 ranks, then white pieces

would promote on reaching any rank numbered 6 or greater, while by inver-

sion, black pieces would promote on reaching rank 3 or less (Y
max

+1�Y). The

set of squares at which a player can promote pieces is that player’s promotion

territory.

2.4 Pieces

A piece is defined by a power of moving, capturing, and promoting, and by an

optional set of constraints on the use of these powers.

2.4.1 Movements

A basic movement consists of a movement type, which may have associated

movement restrictions, a direction vector, D, and a symmetry set, SS. A piece

with a given movement can move to any square reachable from its current

6The rules for vertical-cylinder boards are the same as for normal boards except for mod-

ular addition. It is thus legal for a piece to wrap around a vertical-cylinder board back to its

original square, effectively passing the move to the next player.

5

square, according to its movement type, along D or any d-v in the symmetric

closure SC(SS;D).

Movement Types The simplest type of movement, called a leap, is that of

taking a piece from a square S directly to the next square along a particular

direction vector D, without regard for intervening squares. A piece which

moves in this way is called a leaper. Thus, a movement which takes a piece

only one square forward (for white) would be a h0; 1i-leap, which is the basic

movement of pawns in Chess. Similarly, if a Chess knight were restricted

to moving one square to the right, and two squares forward, this would be a

h1; 2i-leap.

The next type of movement, called a ride, allows a piece to continue for

some number of leaps along the same direction vector, as long as the squares

on intermediate leaps are empty. So a pawn which is allowed to continue

indefinitely forward through a line of empty squares (a pawn rider) would be

a h0; 1i-rider. This is the basic movement of a lance in Shogi. This piece can

be converted to a Chess rook by adding rotation and one of side and forward

symmetries.7

The final type of movement, called a hop, is that in which we relax the

constraint on a rider that intervening (leap) squares must be empty, and insist

instead that some of these squares must be occupied by pieces.This type of

movement is exemplified by the capturing power of a man in Draughts or a

cannon in Chinese Chess.

Movement Restrictions Since a leap is a direct movement from an initial

square to a final square, no other squares are considered. However, rides and

hops pass through a set of intermediate squares, and additional restrictions

may apply to those squares, as part of the rules for a particular piece’s move-

ment. For example, the cannon in Chinese Chess hops over any one piece

owned by either player, with any number of empty squares before and after it,

and captures the first enemy piece it lands on thereafter. However it is possi-

ble to restrict this piece further, by allowing hops over certain pieces only (e.g.,

black knights), constraining the number of empty squares before or after the

hopped-over piece (called the cannon-support) to be within some interval (e.g.,

less than 3, at least 2), and requiring a piece to hop over a specified number of

pieces matching a certain description (e.g., 2 pawns of either player).

To illustrate these restrictions, a constrained hopping movement might be

defined as follows:

7Note that a h0; 2i-rider could move from (4; 1) to (4; 5), as long as (4; 3) was empty, without

regard for squares (4; 2) and (4; 4), as each leap along the way moves directly to the second

square forward.

6

0Z0Z0Z0S

m0Z0Z0m0

0Z0Z0Z0Z

ZQZ0ZrZn

0Z0Z0Z0M

Z0l0l0Z0

0Z0Z0Z0Z

Z0ZNZNZR

Figure 2: Example piece movements.

MOVEMENT

HOP BEFORE [X >= 0]

OVER [X = 2]

AFTER [X <= 2]

HOP OVER [opponent any piece]

h1; 2i SYMMETRY fsideg

END MOVEMENT

A piece with this movement would move in one of the directions h1; 2i or

h�1; 2i (by side symmetry). In a given direction, the piece would first leap

zero or more times, so long as each leap lands on an empty square. Then the

piece would make two more leaps along the same direction, with the condition

that each square be occupied by the opponent’s pieces. Then the piece would

make 0, 1 or 2 further leaps (still along the same direction), through empty

squares. Finally the piece would make one last leap along the same direction,

landing on its final square. If any of these conditions fail, the move is not legal.

For example, in Figure 2, if Nd1 were a piece with a capturing power whose

movement was as a hopper so defined, it could move along direction h1; 2i to

leap through 0 empty squares, then hop over the two enemy pieces qe3 and

rf5, then leap through 0 empty squares, and then make a final leap to land

on ng7. However, Nd1 could not make a similar movement along direction

h�1; 2i to land on na7, as it cannot hop over the friendly piece Qb5.

In a similar manner, a ride can be restricted to at least L leaps and/or at

most M leaps. A ride can also be restricted to the maximum number of avail-

able leaps (by the presence of the keyword LONGEST in the riding movement

definition). For example, in Figure 2, if Rh8 were a rook constrained to the

longest ride in each direction for purposes of moving, it could only move to a8

or h6. This constraint thus limits a piece to one move in each legal direction.

This restriction to longest ride is not applied on vertical-cylinder boards, as it

is not well defined for this case.

7

Disjunctive Movements In addition to the basic movements, we also allow

disjunctive movements, which are the union of several basic movements. Thus,

if we have movements corresponding to a bishop and rook in Chess, then we

can define the movement of a queen as the disjunction of these two simpler

movements. This is also the method of definition of certain promoted pieces

in Shogi.

2.4.2 Capturing

Capturing Movements The movements discussed above are used in defin-

ing both the moving and capturing powers of pieces. While a normal move-

ment is used simply to move a piece from one square to another, with no ef-

fects on other pieces, a capturing movement always results in some change

to the status of other pieces. It is possible (and even common) that pieces in

chess-like games move in one way, and capture in another. Examples of this

are pawns in Chess, cannons in Chinese Chess, and all pieces in Draughts.8

How To Capture In addition to special capturing movements, different pieces

have different methods of capture. The most common capturing method, called

clobbering, is when a piece ends its movement on a square occupied by another

piece, and thus captures it. A second method, applicable only to pieces which

hop as part of their capture movement, allows certain hopped-over pieces (see

below) to be captured. The final capturing method is retrieval, in which a

piece moves directly away from another piece, and thus captures it. A partic-

ular capture definition may allow different types of capture at once, so a piece

might hop over one piece and land on another, capturing both.9 Examples of

these capturing methods are presented shortly.

What To Capture As in the case of restrictions on movements, there can

be restrictions on what a piece can capture (e.g., any piece, opponent rook

or queen), using a particular capturing power. This allows some pieces to be

capable of capturing anything but a particular piece, for example. To be a legal

use of a particular movement for a capturing power, at least one piece must

actually wind up being captured.10

Effects of Capture Now, given that a piece can move in a certain way to

capture a piece (or set of pieces), and that this piece is of the kind that it can

legally capture, there are a number of possible capture effects, all of which

remove the captured piece from its present square. The possible effects are:

8As in the case of movements, a piece can also have multiple (disjunctive) capture powers.

9A fourth common method of capture is coordination, in which some relationship between

two or more pieces determines an additional set of pieces to be captured. Examples are brack-
eting in Hasami Shogi and Othello. This would be an interesting extension to the class pre-

sented here.

10Note that a piece can be restricted to capturing only friendly pieces.

8

� Remove a piece from the game altogether.

� Player Possesses the piece, converts it to his own side (if necessary) and

can place it on any empty square, instead of making a normal piece move-

ment, on one of his turns later in the game (i.e., starting with his next

turn). This is the capture effect used in Shogi.11

� Opponent Possesses the piece, converts it to his own side (if necessary),

and can place it on any empty square later in the game.

Here player and opponent are relative to whichever player has performed

the capture. So if white captures a black piece, the opponent possesses effect

means that black is then free to place this piece (still black) on any empty

square later in the game, while the player possesses effect means that white

would be able to place a white piece of that type later in the game. Examples

of each type of capture effect, with the corresponding notation, are presented

in Section 3.

Examples of Capturing We can illustrate the capture methods and restric-

tions using Figure 1. First, if pieces captured by clobbering, as in normal

Chess, then Rb1 could capture qa1 or qe1 by landing on them. Second, if

pieces captured by hopping, then Pc3 could capture pd4 by hopping over it

to the empty square e5, and Rb1 could capture qe1 by hopping over it to f1.

Third, if pieces moved as in Chess but captured enemy pieces by retrieval, then

Rb1 could captureqa1 by moving away from it to c1 or d1, andNf3 could cap-

ture qg1 by moving directly away from it, for example to the square e5.

Finally, suppose Rb8 is a piece with a capture movement of hopping on

straight lines over any number and type of pieces, a capture restriction that

it can capture only enemy q’s, and all three capture methods (i.e., clobbering,

retrieval, and hopping capture). Then in one move, it could move directly away

from qa8, hopping over qd8 and be8, to land on qg8. All the enemy queens

(qa8,qd8, andqg8) would be captured and removed from the board, butbe8

would not be captured as this piece can only capture enemy qs.12

2.4.3 Compulsory and Continued Captures

The above sections describe the conditions and effects of capturing moves. In

addition, there are two additional types of rules affecting the use of capture

movements. The first type of rule requires a capture move to be made in pref-

erence to an ordinary piece movement. This is indicated by the presence of a

11Although Shogi restricts placement squares for some pieces (pawns cannot be placed on

files where the player has a pawn already), the class defined here makes no such restrictions.

12Note that if there had been ab at g8 instead of aq, this move would not have been legal,
as a piece can never land on an occupied square unless it does so using a clobbering capture

power which is restricted to pieces of a type consistent with the occupant.

9

must_capture constraint, which can appear as both a global and a local con-

straint (attached to the game definition or to the piece definition, respectively).

As a global constraint, this indicates that if a player is to move any piece (as

opposed to placing a piece from his hand), and some piece has a capture move

available, he must play it. As a local constraint, this indicates that if a player

is to move a particular piece, and this piece has a capture move available, he

must play it. If the global version is present, any local versions are irrelevant.

In both cases, when multiple such captures are available, the player is free to

choose any one of them.

The second type of rule allows a player to make multiple capture move-

ments within a single logical move, and is indicated as a continue_captures

constraint. This occurs only in a local version, which allows multiple capture

movements with the same piece. Unlike the game 10x10 Draughts, captured

pieces are removed immediately, not at the end of a turn. Thus, a continued

capture sequence is logically equivalent to one player making a sequence of

capture movements with a particular piece, while the other player passes.

Finally, these two rules interact as follows: if at any point, both the must-capture

and continue-captures rules are in effect, then the player must continue cap-

turing if it is legal to do so. As the continue captures is only a local rule, only

the piece which just captured is constrained to continue capturing.

The game of Checkers (Figure 3) illustrates the use of these rules. In this

game, the must_capture rule is global, meaning that a player must make a

capturing move if any of his pieces can capture, and the continue_captures

rule is local to each piece, meaning that a player is allowed to continue cap-

turing with a piece which has just made a capture movement. The interaction

of these two rules means that a player must capture if he can, and once he has

done so, he must continue capturing with the same piece until it cannot make

any more captures.

2.4.4 Promotion

In addition to the normal moving and capturing powers attached to a piece,

there is a special power, called promotion, which allows the piece to be changed

while remaining on its final square. The rule applies when a player has moved

a piece (possibly several times if this piece made a sequence of captures), which

finishes its movements on a square which is in promotion territory for the

player who moved it (see Section 2.3).13

In this case, one of the players (as specified in the definition of the piece)

gets to replace the promoting piece with any piece of his choice matching a

certain description. Thus, while in Draughts and Shogi pieces promote to a

specific piece of the same colour, pawns in Chess promote to any of a set of

pieces of the same colour, as chosen by player. Under the generalisation here,

13Note that moving from one square in promotion territory to another still qualifies a piece

for promotion, and also that promotion applies only to a piece which actually used a moving

or capturing power, as opposed to one which was placed on the board by one of the players.

10

this choice could also be made by opponent. If so, the opponent performs the

promotion at the start of his next turn, before proceeding to make his ordinary

placement or transfer move.

2.5 Initial Setup

Given a board and a set of pieces, it is necessary to determine a method for set-

ting up an initial configuration of pieces. While some chess-like games begin

with an arbitrary, fixed initial state, others have the players alternate assign-

ing either their own piece, or their opponent’s piece, to any of a set of squares.14

A final possibility is that each contest of a particular game could begin with

a randomised assignment of a known set of pieces to a known set of squares.

Since these games are symmetric, both the fixed and random configurations

are guaranteed to be symmetric. When players place their own pieces, how-

ever, there is no constraint that such placement be symmetric.15 Finally, it

should be noted that not all piece-types are necessarily present at the start

of the game, as some can only be obtained through promotion (as in Checkers

and Shogi).

2.6 Goals

So far we have described the method of determining the initial state, and the

set of operators, which characterise this class of games. The final component

necessary to describe any problem is the goal. As these games are symmetric,

the goals, like the initial setup and piece movements, are defined from the

perspective of the forward player. Thus, a goal definition simply defines those

positions in which a player has achieved a goal, and we define a position as

a win for player if only player has achieved a goal, a draw if both players

have achieved a goal, and a loss if only opponent has achieved a goal. Goals

are evaluated, from the perspectives of both players, at the start of each turn,

when control is transferred from one player to another.16 Thus either player

might win at the start of each turn, if a goal is true from his perspective.

This class of games has three types of goals. First, a player achieves a

stalemate goal in a position in which a specified player (player or opponent)

cannot legally make any complete moves at the start of his own turn.17 Thus,

14This corresponds to the clause for assignment decision in the grammar in Ap-

pendix A. Note that piece names may contain duplicates, as a player may have multiple

pieces of the same type (e.g., players have two knights each in Chess).

15White places the first piece, and players alternate thereafter. During this phase there are
no captures or promotions. Also, the initial squares upon which pieces are placed comprise

the first R ranks for each player, so that the pieces always wind up assembled facing each

other across the board.

16Note that under the opponent-promotes promotion method, a player begins a turn by pro-

moting his opponent’s piece (see Section 2.4.4), so goals are evaluated before he does this.
17Note again that promoting an opponent’s piece does not constitute a complete move. In

11

white is stale-mated if he begins a turn with no legal moves, and a player is

not stale-mated if it is the other player’s turn to move. Every game in this

class must have a defined stalemate goal, as the rules must cover positions

in which a player cannot move. However each game decides whether such an

outcome is a win, draw, or loss for the stale-mated player.

Second, a player achieves an eradicate goal if, at the start of any turn after

the initial assignment stage, there are no pieces on the board which match

a certain description. Examples are goals to eliminate the opponent king

(Chess, Chinese Chess, Shogi), to eliminate all the opponent’s pieces (Check-

ers), or to eliminate all your own pieces (Giveaway Chess). Note that a de-

scription might be complex, allowing goals to eliminate the opponent’s knights

and pawns. Note also that the description might be of the form: [any player

king]. Since any player is symmetric for both players, this implies that both

players achieve a goal if there are no more kings on the board. In other words,

this outcome would be a draw.

Third, a player achieves an arrival goal if, at the start of a turn, a piece

matching a certain description occupies a certain square on the board. This

allows goals such as player getting his own knight to the square (4; 5), or player

getting opponent’s queen to the square (2; 2).18

2.6.1 Disjunctive Goals

An additional source of complexity in the rules of games in this class is that

players can have disjunctive, or multiple, goals, in which a player achieves

a goal if any of a number of conditions arise. For example, white may win

the game if either someone eradicates black’s knights, or white loses all his

pieces. Such complex goals are especially interesting when the separate goals

interfere with each other.19

2.6.2 General Termination

The goals of a game define the primary ways in which a game can end. How-

ever, it is possible that a game reaches a state in which neither player can (or

knows how to) win. To stop such games from continuing forever, two additional

rules are assumed for all games within this class. The first is an N -move rule,

which says that the game automatically ends in a draw after some number

of moves have been played. Since it is difficult to determine just how many

moves any game in this class may require, the choice of N is rather arbitrary.

order to be legal the player must also be able to move or place a piece on the board.
18In the absence of certain compulsions, like must capture rules, this effectively means that

a rational player will never move his piece to such a square, thus effectively adding a con-

straint instead of a goal to the game. However, it is certainly legal for a program to play such

a move, thus losing the game instantly.

19It is difficult to imagine a naive evaluation function which could automatically handle
these disjunctive goals.

12

For now we shall leave N at 500 moves (i.e., after black plays his 250th move,

if neither player has won, the game is a draw).

A second rule is included to disallow endless cycles. Although this is not

strictly necessary (since games terminate after N moves anyway), we adopt

a rule similar to the triple repetition rule in Chess, which says that a game

is a draw if the same position has been reached a third time with the same

player to move. By position, we mean the contents of the board and hands of

the players (i.e., they possess the same set of pieces).20

2.7 Coverage of Existing Games

Now that we have described the class of games in detail, we can discuss

the general coverage of this class.

As is discussed more thoroughly in Section 4.1, the class of symmetric

chess-like games was deliberately designed to be a generalisation which was

restricted enough to preserve the structure of some real games, while general

enough to allow complex interactions and a variety of games. This goal was

assisted by drawing on research from the field of Fairy Chess, as developed by

T.R. Dawson ([Dic71]). This field specialises in developing new variants and

generalisations of Chess. Dawson’s Theory of Movements formed the basis

for the movement types (leap, ride, and hop) discussed in Section 2.4.1. This

allows the class defined here to capture the basic forms of movement encoun-

tered not only in existing standard chess-like games, like Chess, Shogi, and

Checkers, but also to handle many of the variants developed in Fairy Chess.

Although this allows most of the basic movements to be represented in this

class, there are several aspects of common games which seemed too idiosyn-

cratic to generalise. For example, it is difficult to find a natural generalisation

of the en passant or castling rules in Chess, or of the rule in Shogi which pro-

hibits a player from placing a pawn on a file on which he already has a pawn.

Thus, these rules cannot easily be represented in the class defined here.

Another point about empirical coverage of this class is that players are al-

lowed to make moves which would lose the game instantly, since piece move-

ments are separate from goal criteria. For example, in Chess it is illegal to

leave your king in check, and the game ends if a player can make no legal

moves. In the class defined here, it is legal to move into check, but doing so

would cause a loss of the game against any opposition.21

As an illustration of how chess-like games are defined in this class, Fig-

ure 3 presents a grammatical representation of the complete rules for Ameri-

can Checkers as a symmetric chess-like game.

20As no rules in games in this class make use of history, there is no need to discuss history

in determining repetition of position, as is done in Chess.

21Thus the distinction between checkmate and stalemate in Chess cannot easily be fully

represented.

13

GAME american checkers

GOALS stalemate opponent

BOARD SIZE 8 BY 8

BOARD TYPE planar

PROMOTE RANK 8

SETUP man AT f(1; 1) (3; 1) (5; 1) (7; 1) (2; 2) (4; 2)

(6; 2) (8; 2) (1; 3) (3; 3) (5; 3) (7; 3)g

CONSTRAINTS must capture

DEFINE man

MOVING

MOVEMENT

LEAP

h1; 1i SYMMETRY fsideg

END MOVEMENT

END MOVING

CAPTURING

CAPTURE

BY fhopg

TYPE [fopponentg any piece]

EFFECT remove

MOVEMENT

HOP BEFORE [X = 0]

OVER [X = 1]

AFTER [X = 0]

HOP OVER [fopponentg any piece]

h1; 1i SYMMETRY fsideg

END MOVEMENT

END CAPTURE

END CAPTURING

PROMOTING

PROMOTE TO king

END PROMOTING

CONSTRAINTS continue captures

END DEFINE

DEFINE king

MOVING

MOVEMENT

LEAP

h1; 1i SYMMETRY fforward sideg

END MOVEMENT

END MOVING

CAPTURING

CAPTURE

BY fhopg

TYPE [fopponentg any piece]

EFFECT remove

MOVEMENT

HOP BEFORE [X = 0]

OVER [X = 1]

AFTER [X = 0]

HOP OVER [fopponentg any piece]

h1; 1i SYMMETRY fforward sideg

END MOVEMENT

END CAPTURE

END CAPTURING

PROMOTING

PROMOTE TO king

END PROMOTING

CONSTRAINTS continue captures

END DEFINE

END GAME.

Figure 3: Definition of American Checkers as a symmetric chess-like game.

14

3 Move Grammar

As discussed in a companion paper ([Pel92]) , for humans and programs actu-

ally to play Metagame there needs to be a language through which players can

communicate their moves. The move grammar for symmetric chess-like games

appears as Appendix B. The grammar is based on the standard notations for

moves used in Chess and Shogi, but extended to describe unambiguously all

the changes which can happen as part of a move in this class. As the move

grammar should be clear, we will only provide a few example descriptions of

different types of moves.

Basic Movements and Captures The basic movement of a piece P from

square (x1; y1) to square (x2; y2) is written: P (x1; y1) ! (x2; y2). If this move

had the capture effect of removing a piece Q at square (x3; y3), the full move

would be (replacing symbols for squares): P sq1 ! sq2 X Q sq3.

Possession If the effect of a given capture were player possesses instead of

removal, the captured piece Q would then be in the possession of the player

who moved. If white had just moved, this would be denoted: P sq1 ! sq2 X

Q sq3 / (white). If the effect were instead opponent possesses, the captured

piece would go to the opponent. The above move thus would be: P sq1 !

sq2 X Q sq3 / (black).

Multiple Captures A single capture movement can result in the capture

of several pieces. For example, a piece may hop over one piece to land on

another, thus capturing both. Such multiple captures are denoted by listing

each piece and square captured: P sq1 ! sq2 X Q sq3 R sq4. If the effect

were player possesses instead of remove, such a move would be denoted: P

sq1 ! sq2 X Q sq3 R sq4 (white).

Placing a Possessed Piece A player in possession of a piece can at any

later move place this piece on any empty square, instead of making a normal

piece movement. So if the piece captured and possessed on sq3 in the last move

above was Q, a later move for white, placing this piece on square sq, would be:

Q(white) ! sq.

Promotion by Player The notation for a move which promotes a piece in-

cludes the square the piece is on, the player who will now own the piece,22

and the piece-type being promoted to. If white moves piece P to sq2 in his

promotion territory, P has a fixed or player promotes promotion power, and

white decides to promote it to a king, this would be denoted: P sq1 ! sq2;

promote sq2 white king.

22Recall that promotion may involve a change of ownership.

15

Promotion by Opponent When a player must begin his turn by promot-

ing a piece which has just been moved by the opponent, the notation for this

promotion precedes the notation for the rest of the move. For example, sup-

pose a move by white moves a piece P from sq1 to sq2, capturing some piece

Q on sq3, with the opponent possesses capture effect, and also that sq2 is in

promotion territory for white, and that piece P has the opponent promotespro-

motion power. As this promotion is not denoted in the player’s move (he makes

no choice here, so it can be inferred), the notation for white’s move would be:

P sq1 ! sq2 X Q sq3 (black).

White’s turn would then end, and black would then have to promote white’s

moved piece into some piece P2 consistent with its promotion power, and then

make a normal move (suppose he places the captured piece Q from his hand

on square sq4). Black’s move would then be denoted:

promote sq2 P2; Q(black) ! sq4.

Continued Captures This sequential notation (with the semicolon) is also

used when a player continues capturing (see section 2.4.3). For example, a

continued captures move in Checkers might be written: White Man (a 1)

! (c 3) X (b 2) ; White Man (c 3) ! (e 5) X (d 4).

This notation is complete and unambigous, and thus allows humans and

programs to communicate their moves in any game in the class of symmetric

chess-like games.

4 Game Generator

The previous section discussed the grammar for this class of games, which

shows what kind of games are possible. This section discusses the specifics

of the generator, which actually produces new games from the set of those

possible. Section 5 discusses a new game produced by the generator.

4.1 Generality vs. Structure

Defining a class of games for Metagameis almost as difficult as developing pro-

grams to play Metagame, as it involves making a tradeoff between generality,

where we prefer classes which can describe the widest variety of games, and

structure, where we prefer a class where the individual games appear to have

similar underlying structure. On the one hand, very expressive class defini-

tions (such as: those games definable in a particular programming language)

require more intelligent game generators in order to produce any interesting

games, as the lack of inherent structure decreases the chances that a given

game within that class will be interesting, or even playable. On the other

hand, very restricted generalisations (such as: variants of Chess where the

pieces start in different locations) could probably be fully analysed by the hu-

16

man using extremely small generalisations of existing methods, thus defeat-

ing our goal that the programs should do more of the game analysis.

The compromise adopted here was to produce a class which is a moder-

ate generalisation over a set of games which are actually played by people,

but which still allows for enough interactions and complexities to generate a

diverse and interesting set of games. We allow the components of the game-

generator to be non-modular, in that they explicitly refer to generated aspects

of other components, which means that the rules for the pieces can be highly

complex and interactive. Yet, since the rules for these games are fully symmet-

ric, we increase the chances that a given game is actually balanced, regardless

of the complexities involved.23

4.2 Non-modularity

Non-modularity is achieved by generating a set of piece names first. Each

piece name is just a symbol, to which the generator will attach a set of prop-

erties in order to define a particular piece. Each game component generator,

like the movement generator, then has access to this entire set of piece names,

from which it can then choose a subset in order to produce interactions with

other pieces. For example, the movement generator might decide to generate

a hopping movement. These movements have a restriction component, which

describes the set of pieces over which a particular hopper can hop. The restric-

tion component then chooses a subset from the set of piece names. Although

the specific details of the pieces in this subset are inaccessible to the generator,

the inclusion of the names alone is enough to develop an extremely complex

pattern of interactions between the various pieces in a game.

4.3 Generator Parameters

Except for this element of non-modularity, the other components in a game

are effectively generated by statistically choosing from tables of possibilities.

Specifically, for each point in the grammar at which there is a nondeterminis-

tic choice point, there is an associated probability distribution indicating the

probability of making one choice out of those possible.

For example, the clause in the grammar defining movement types is as fol-

lows:

movement_type --> leaper | rider | hopper

This states that a movement type can be either a leaper, a rider, or a hopper.

The probability distribution corresponding to these possibilities is defined as

follows:

23The issue of designing interesting games is discussed more generally in the preceding

paper ([Pel92]).

17

parameter(movement type,

distribution([leaper=0.4, rider=0.4, hopper=0.2])).

This states the probability that the generator will choose each of these options,

when they are available.

One interesting consequence of generating games in this fashion, by sta-

tistically sampling among possible rewrite rules, is that it provides a natural

method of generating games with certain statistical properties, in that we can

modify parameters corresponding to the probability of making different sig-

nificant choices.

Rule Complexity One property of interest is the complexity (length) of the

rules in a game. This can be controlled by means of a small set of parame-

ters in the generator which are consulted in order to choose between making a

game component more complex, or leaving it as it is.24 This allows components

to be generated with arbitrarily long descriptions, though longer descriptions

are exponentially less probable than shorter ones. By varying these parame-

ters, we can thus change the overall expected complexity of the components to

which they are associated. Examples of such parameters are those attached

to the movement_def and capture_def clauses, which control the probability of

adding another disjunct to these definitions.

Decision Complexity Another statistical property of a game which can be

determined in this way is the degree to which a game allows players to make

choices, instead of assigning arbitrary values to these choices as part of the

game definition. For example, pieces in Shogi promote to exactly one type of

new piece each, whereas pawns in Chess promote to any one of a set of choices,

to be decided by the player at the time of promotion. This property can eas-

ily be varied to produce different types of games, by modifying the distribu-

tion attached to the rule which decides, for example, whether a promotion or

initial-setup decision should be arbitrary or not.

Search Complexity A related statistical property of generated games is

that of search complexity, essentially the size of the search space in a particu-

lar game. This can be adjusted, without affecting the rule or decision complex-

ities discussed above, by altering the probability distribution on board size, as

larger board sizes will tend to allow more possible movements for each piece,

and thus more possible moves in each position in the game. Of course, the

parameters mentioned above (such as capture complexity) also affect the size

of the search space, such as increasing increasing the probability that a piece

has different types of movement available.

24More precisely, several rules choose between two possibilities, one of which is tail-

recursive. Assigning a probability p to choosing the non-recursive case means that the re-

cursion will continue with probability 1� p.

18

Certain parameters, in fact, have dramatic consequences on the search

space. For example, the presence of an opponent_promotes rule, which allows

the opponent to make a promotion decision before starting his move (see sec-

tion 2.4.4), multiplies the number of possible moves available to him in a such

a position: if a player had n ordinary move movements in a position, but he

first has to promote an opponent’s piece to one of p other pieces, then the total

branching factor for that position is pn. If he had also to promote whichever

piece he moved to one of M pieces, the branching factor would rise to Mpn.

At the opposite extreme of affecting search complexity, the presence of

must capture constraints has the effect of dramatically reducing the size of

the search space.

Locality A final property of interest is locality, which determines the frac-

tion of a board which can be traversed by a piece in one leap, without regard

for the other squares on the board. The less locality, the more pieces on one

side of the board can directly affect the status of pieces on another side of the

board. It is possible that this affects the degree to which a program could rea-

son about separate aspects of the board individually. Locality is affected by

the modules constraining the restrictions on riders and hoppers, the module

which generates direction vectors, and the board_type parameter, as a cylin-

drical board allows pieces to move from one side to the other with a direct

leap.

4.4 Consistency Checking

Deciding whether a generated game can possibly be won generally requires a

level of analysis beyond that implemented in the generator (in fact, the gen-

eral problem is NP-Complete, as proved in [Pel93b]). However, the current

generator does perform a simple analysis to avoid some of the common prob-

lems which would otherwise produce a high proportion of trivial games. For

example, the generator does not produce goals to arrive a piece on a square

where it will already be placed in the initial position. 25 In general, though, it is

up to the programs to decide whether or not a game is trivial or even winable,

which is indeed an aspect of game analysis traditionally left to humans.

5 A Worked Example

A recurrent point in work on Metagame has been that existing methods of

computer game-playing have left much of the interesting game analysis to

the human researcher, and that existing methods like minimax do not offer

much advice on developing programs to play a new game. Thus, we developed

a class of new games, and a generator for it, to highlight these issues and

25More details on this type of analysis are found in [Pel93b].

19

provide a test bed for addressing them. In this section we provide an example

game actually produced by the generator, and a quick analysis of this game

performed by the author. We then draw two conclusions from this example.

First, although generated games often look silly at first, the complexity of the

rules and symmetric structure offer chances for interesting strategic analysis.

Second, the kind of game-analysis used to analyse these games is not easily

amenable to a naive and general-purpose evaluation function.

5.1 Turncoat-Chess

I generated a random game using the generator with parameters set to pre-

fer small boards and moderate complexity of movements, captures, and goals.

The resulting game, as actually output from the generator, is presented in

Figure 4 and Figure 5. I have replaced some internal symbols with more

mnemonic names, and named this game turncoat-chess.

As the rules of this game are fairly complex, I shall attempt to summarise

them in a more comprehensible form. For a full explanation of the meaning of

particular rules, such as movement powers, see Section 2.

5.1.1 Summary of Rules

Turncoat-Chess is played on a 5-by-5 planar board. There are three types of

pieces: slug, termite, and firefly. The initial setup is fixed, with pieces placed

on the first rank of each player, symmetrically across the board. Each player

starts with one slug, two termites, and two fireflies. Figure 6 shows a repre-

sentation of the initial position for turncoat-chess. Fireflies are represented

by the symbols Nand n, termites by Qand q, and slugs by Rand r, for white

and black pieces, respectively.

The pieces move and capture in different ways, discussed below, but all

pieces can capture any type or colour of piece, by landing on it, and the cap-

tured piece is then permanently removed from the game. All pieces promote

upon reaching the last rank, at which point the player who owns the piece

can replace it with any type of piece, although for two of the pieces he must

transfer ownership of it to the enemy after promoting.26 A player wins if he

has no legal moves at the start of his turn.

The descriptions of pieces are broken into powers of moving, capturing, and

promoting.27

Slug The first type of piece is a slug. The slug moves by continually leaping

(i.e., riding) to every second square along a particular rank or file, with the

constraint that for each direction, it must ride as far as it can.28 A slug’s power

26Hence the name, turncoat-chess.
27It should be remembered that a capturing power can only be used if it results in a piece

being captured.

28A way to think of this is that it can’t stop riding along a line, until it is blocked.

20

GAME turncoat chess

GOALS stalemate player

BOARD SIZE 5 BY 5

BOARD TYPE planar

PROMOTE RANK 5

SETUP termite AT f (1; 1) (2; 1) g

slug AT f (3; 1) g

firefly AT f (4; 1) (5; 1) g

DEFINE slug

MOVING

MOVEMENT

RIDE LONGEST

h2; 0i SYMMETRY all symmetry

END MOVEMENT

END MOVING

CAPTURING

CAPTURE

BY fclobberg

TYPE [any player any piece]

EFFECT remove

MOVEMENT

HOP BEFORE [X >= 0]

OVER [X = 2]

AFTER [X >= 0]

HOP OVER [any player ffireflyg]

h0; 1i SYMMETRY fforward sideg

END MOVEMENT

END CAPTURE

END CAPTURING

PROMOTING

DECISION player

OPTIONS [fplayerg any piece]

END PROMOTING

END DEFINE

DEFINE termite

MOVING

MOVEMENT

HOP BEFORE [X >= 0]

OVER [X = 1]

AFTER [X >= 0]

HOP OVER [any player ftermiteg]

h0; 1i SYMMETRY fside rotationg

END MOVEMENT

MOVEMENT

RIDE LONGEST

h0; 1i SYMMETRY all symmetry

END MOVEMENT

END MOVING

CAPTURING

CAPTURE

BY fclobberg

TYPE [any player any piece]

EFFECT remove

MOVEMENT

LEAP

h2; 3i SYMMETRY fforward sideg

END MOVEMENT

END CAPTURE

END CAPTURING

PROMOTING

DECISION player

OPTIONS [fopponentg any piece]

END PROMOTING

END DEFINE

Figure 4: Turncoat-Chess, a new game produced by the game generator.

21

DEFINE firefly

MOVING

MOVEMENT

LEAP

h1; 2i SYMMETRY all symmetry

END MOVEMENT

MOVEMENT

HOP BEFORE [X >= 0]

OVER [X = 1]

AFTER [X >= 0]

HOP OVER [any player ftermiteg]

h2; 1i SYMMETRY fside rotationg

END MOVEMENT

MOVEMENT

LEAP

h2; 3i SYMMETRY all symmetry

END MOVEMENT

MOVEMENT

LEAP

h0; 1i SYMMETRY all symmetry

END MOVEMENT

END MOVING

CAPTURING

CAPTURE

BY fclobberg

TYPE [any player any piece]

EFFECT remove

MOVEMENT

LEAP

h0; 1i SYMMETRY all symmetry

END MOVEMENT

MOVEMENT

RIDE

h2; 3i SYMMETRY fforward sideg

END MOVEMENT

END CAPTURE

END CAPTURING

PROMOTING

DECISION player

OPTIONS [fopponentg any piece]

END PROMOTING

END DEFINE

END GAME.

Figure 5: Turncoat-Chess (continued).

mnsql

0Z0Z0

Z0Z0Z

0Z0Z0

LQSNM

N

7! Firefly

Q

7! Termite

R

7! Slug

Figure 6: Initial board for turncoat chess.

22

to capture is very restricted: if there are two consecutive fireflies (of any colour)

along a file, it can hop over any number of empty squares, then over the two

fireflies, then over any number of empty squares, and finally capture any piece

it lands on. So in Figure 2, ifRh1 were a slug andNh4 andnh5 were fireflies,

then Rh1 could capture Rh8, which is the first piece beyond the fireflies on

the h-file. Finally, a slug can promote to any other piece, and does not change

colour on promotion.

Termite The second type of piece is a termite, which moves in one of two

ways. First, it can hop along a line forward, backward, or to either side, but

must hop over a single termite of any colour, though it can pass over any num-

ber of empty squares before and after it. Second, it can move like a chess

rook, in which case it makes the longest ride in a given direction until it is

blocked. A termite captures any piece at relative coordinates h2; 3i, forward

and backward, left and right (but not h3; 2i, which requires rotational symme-

try). Finally, a termite promotes to any type of piece, though it then changes

ownership (so a white termite promotes to any type of black piece).

Firefly The third type of piece is a firefly, which has many forms of move-

ment and capture (see Figure 5). Its simple forms of movement are leaping as

a chess knight, leaping 1 square orthogonally, or leaping to any square at rel-

ative coordinates h2; 3i or h3; 2i, in any directions. Its more complicated form

of movement is as a knight-hopper, in which case it must hop over a single

termite. For example, in Figure 2, a firefly Nf1 could hop over a termite qe3,

and then land on either of the empty squares d5 and c7.

A firefly captures either by leaping to an orthogonally adjacent square, or

leaping to a square at relative coordinates h2; 3i, h�2; 3i, h2;�3i, or h�2;�3i.29

Finally, a firefly promotes the same way as a termite.

5.2 A Quick Analysis

As the rules look extremely complex, it can be difficult for a human to remem-

ber them, much less play a game using them. However, to illustrate the kind

of simple analysis which is typical of humans analysing games, I will give an

example of my own analysis of this game.

5.2.1 Strategy of Turncoat-Chess

Envisioning a Win In order to win, a player must begin a turn having no

legal moves. Thus either he must have no remaining pieces, or they must have

no moves. The first case seems easier to achieve. A player can remove his own

29According to the piece definition, it rides along these vectors, but on a 5 by 5 board there
is enough room for only 1 leap.

23

pieces either by capturing them, or, in the case of fireflies and termites, by giv-

ing them to the opponent via promotion. As a player cannot give away a slug,

he must either capture it with one of his own pieces, or first promote it into a

termite or firefly, and then promote that piece to give it to the opponent. As

the latter takes more moves, capturing a slug to start with seems the simplest

option.

A Naive Winning Plan Thus, the simplest plan to win, ignoring opposition,

is as follows: first, capture the rest of one’s own pieces using one of the fireflies,

then promote the final firefly, which will take at least 2 more moves.

Two Counter Plans However, this plan can easily be defeated with any

opposition. First, it is not enough for a player to get rid of his last piece, as the

opponent might be able to give him a piece back, and it is only stalemate if a

player begins his turn without any moves. Second, while a player captures all

his pieces with a firefly, the opponent can advance his own pieces to promotion

range (after capturing his own slug first). Then when the first player has only

1 firefly left, the opponent can promote each piece to give away several slugs.

Slugs are hard to promote, and have limited mobility, so the first player should

be so busy trying to promote the slugs back to fireflies, that the opponent can

capture or give his pieces away by promotion.

5.3 Discussion

So, this simple analysis reveals that it is at least possible to win this game,

and there are a set of straightforward plans and counter plans which must be

traded off. In the end, it is likely that one player will be overloaded with slugs,

giving the other player time to win, but the means by which this happens are

far from trivial. Thus, while the rules are strange and complex, the game could

prove to be interesting, and certainly does present some elements of strategic

complexity.30

While this analysis has only touched on the basic strategy of this new game,

it does illustrate the kind of analysis humans perform when they are presented

with a new game, and similar analyses for other games can be found in special-

ist books on these games, or in almost any paper on computer game-playing,

where the human begins by analysing the game for significant features which

could form the basis of an evaluation function. Thus far, though, this type of

analysis has been considered a prerequisite for computer game-playing, and

not a subject of research in its own right.

30When I first drafted this section, I generated a game (the first produced after a few system

errors) and analysed it for 20 minutes, and had not yet played against an opponent. Thus, this
strategy is very basic, and the reader will probably have thought of better strategies already.

24

6 Conclusion

Now that we have instantiated Metagame sufficiently to have developed a con-

crete problem that can actually be addressed, an important concern is whether

this whole project is beyond the state of the art in games, learning, and even

AI in general. It might be argued that researchers have tended to specialise on

particular games, and leave the difficult aspects of game-analysis to humans,

precisely because these problems are too hard to tackle at the present time.

While it is true that playing Metagame well raises some difficult issues, it

is a straightforward process to build a program to play it legally (see [Pel93a]).

Since the representation of any game produced by a generator is basically a

definition of the legal moves of the game, a conversion program can be written

which takes a new game and produces a legal move generator for it. From

that point, we at least have an entrant in the competition, a random player,

as a baseline.

Given that we can develop a legal move generator, it is then straightfor-

ward to create a program which plays based on some general heuristics. Ex-

amples of these might be using expected outcome ([Abr90]), mobility ([Don92,

Har87]) or material as features in an evaluation function to conduct a minimax

search (see [Pel93a]).

Thus it is easy to create some obvious baseline programs to play Metagame.

From that point, any programs which actually do anything more clever are

likely to defeat these simple programs. And this was precisely the motivation

for Metagame: to change the problem such that once again, programs which

address the interesting issues are expected to win more games. Whether they

do or not in practice is an empirical question which can also be addressed in

the context of competition, which in itself is an exciting prospect.

7 Acknowledgements

Thanks to Susan Epstein, Nick Flann, Mike Frank, Robert Levinson, Bert

Menting, Douwe Osinga, Dan Pehoushek, Prasad Tadepalli, Mark Torrance,

and David Wilkins for interesting discussions. Thanks especially to my super-

visors, Steve Pulman and Manny Rayner, to Victor Allis for careful reading

of drafts and for many useful suggestions on this class of games, and to my

mentor-in-absentia, Peter Cheeseman.

References

[Abr90] Bruce Abramson. Expected-outcome: A general model of static eval-

uation. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 12(2), February 1990.

25

[Bel69] R.C. Bell. Board and Table Games from Many Civilizations. Oxford

University Press, 1969.

[Dic71] Anthony Dickins. A Guide to Fairy Chess. Dover, 1971.

[Don92] Ch. Donninger. The relation of mobility, strategy and the mean dead

rabbit in chess. In H.J. van den Herik and L.V. Allis, editors, Heuris-

tic Programming in Artificial Intelligence 3 – The Third Computer

Olympiad. Ellis Horwood, 1992.

[Eps89] Susan Epstein. The Intelligent Novice - Learning to Play Better. In

D.N.L. Levy and D.F. Beal, editors, Heuristic Programming in Ar-

tificial Intelligence – The First Computer Olympiad. Ellis Horwood,

1989.

[Har87] D. Hartmann. How to Extract Relevant Knowledge from Grand Mas-

ter Games, part 1. ICCA-Journal, 10(1), March 1987.

[Pel92] Barney Pell. Metagame: A New Challenge for Games and Learning.

In H.J. van den Herik and L.V. Allis, editors, Heuristic Program-

ming in Artificial Intelligence 3 – The Third Computer Olympiad.

Ellis Horwood, 1992. Also appears as University of Cambridge Com-

puter Laboratory Technical Report No. 276.

[Pel93a] Barney Pell. Metagame Realized: A Player to Beat. In D.N.L. Levy

and D.F. Beal, editors, Heuristic Programming in Artificial Intelli-

gence 4 – The Fourth Computer Olympiad. Ellis Horwood, 1993. In

preparation.

[Pel93b] Barney Pell. Strategy Generation and Evaluation for Meta Game-

Playing. PhD thesis, Computer Laboratory, University of Cam-

bridge, 1993. Forthcoming.

A Class Definition

This grammar for symmetric chess-like games is presented in an extended-

BNF notation. Capitalised and quoted words are terminal symbols, except

for IDENTIFIER and NUMBER, which stand for any identifier and any number,

respectively. Text in unquoted braces is optional. The grammar is not case-

sensitive, so that game definitions may use uncapitalised words for clarity.

Comments can appear within game definitions. Comments begin with per-

cent symbols ('%') and end with the start of a new line.

game --> GAME IDENTIFIER

goal_defs

board

SETUP assignment_list

26

{CONSTRAINTS MUST_CAPTURE}

piece_defs

END GAME '.'

goal_defs --> GOALS goals

goals --> goal | goal goals

goal --> ARRIVE description AT square_list

| ERADICATE description

| STALEMATE player

description --> '[' player_gen piece_names ']'

player_gen --> '{' player '}' | ANY_PLAYER

player --> PLAYER | OPPONENT

piece_names --> '{' identifiers '}'

| ANY_PIECE

identifiers --> IDENTIFIER | IDENTIFIER identifiers

square_list --> '{' squares '}'

squares --> square | square squares

square --> '(' NUMBER ',' NUMBER ')'

board --> BOARD_SIZE NUMBER BY NUMBER

BOARD_TYPE board_type

PROMOTE_RANK NUMBER

board_type --> PLANAR | VERTICAL_CYLINDER

assignment_list --> assignment_decision

| assignments

assignment_decision --> DECISION assigner ASSIGNS

piece_names TO square_list

END DECISION

assigner --> player | RANDOM

assignments --> assignment | assignment assignments

27

assignment --> IDENTIFIER AT square_list

piece_defs --> piece_def | piece_def piece_defs

piece_def --> DEFINE IDENTIFIER

MOVING movement_def END MOVING

CAPTURING capture_def END CAPTURING

PROMOTING promote_def END PROMOTING

{CONSTRAINTS constraint_def}

END DEFINE

movement_def --> movement | movement movement_def

movement --> MOVEMENT

movement_type

direction

symmetries

END MOVEMENT

movement_type --> leaper | rider | hopper

leaper --> LEAP

rider --> RIDE {MIN NUMBER} {MAX NUMBER} {LONGEST}

hopper --> HOP BEFORE compare_eq

OVER compare_eq

AFTER compare_eq

HOP_OVER description

compare_eq --> '[' X comparative NUMBER ']'

comparative --> '>=' | '=' | '<='

direction --> '<' NUMBER ',' NUMBER '>'

symmetries --> SYMMETRY symmetry_set

symmetry_set --> ALL_SYMMETRY

| '{' {FORWARD} {SIDE} {ROTATION} '}'

capture_def --> capture | capture capture_def

capture --> CAPTURE

28

BY capture_methods

TYPE description

EFFECT effect

movement_def

END CAPTURE

capture_methods --> '{' {RETRIEVE} {CLOBBER} {HOP} '}'

effect --> REMOVE | player POSSESSES | player DISPLACES

promote_def --> PROMOTE_TO IDENTIFIER

| promotion_decision

promotion_decision --> DECISION player

OPTIONS description

constraint_def --> {MUST_CAPTURE} {CONTINUE_CAPTURES}

B Move Grammar

move --> {promote ';'}

main_move '.'

promote --> PROMOTE square piece

main_move --> placement

| transfers {';' promote}

placement --> piece '(' color ')' '->' square

transfers --> transfer ';' {transfers}

transfer --> moving {capture}

moving --> piece square '->' square

capture --> X piece square effect {capture}

effect --> remove

| possess

29

remove --> {}

possess --> '/' '(' color ')'

piece --> color piece_name

color --> WHITE

| BLACK

piece_name --> IDENTIFIER

square --> '(' NUMBER ',' NUMBER ')'

30

