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ABSTRACT from a self-organizing decentralized system to a completely cen-

In this paper, we discuss the useTafgeted Trajectory Distribution tralized system where one agent directly controls a set of automa-
Markov Decision Process&3 TD-MDPs)—a variant of MDPs in tons. We con§|der thg case wherg agents are mostly autonomous,
which the goal is to realize a specified distribution of trajectories b”t_ are oc_:casmnglly given |n§truct|ons from a centra_l coprdlna_tor.
through a state space—as a general agent-coordination framework IS arc_hlte_'cture Isa natural fit for a number _Of _domaln_s, including
We present several advances to previous work on TTD-MDPs. 4" motivating domain, drama management in interactive games.
We improve on the existing algorithm for solving TTD-MDPs by Interactive games are freq_uently populated by non-player char-
deriving a greedy algorithm that finds a policy that provably min- acters (NPCs) that interact with players and are often central to the
imizes the global L-divergence from the target distribution. We  Storyline. While NPCs ought to be believably autonomous and ap-
test the new algorithm by applying TTD-MDPsdeama manage- propriately interactive, it is extremely difficult for an author to cre-
ment where a system must coordinate the behavior of many agentsate a suc_cessful_game purely by authoring individual NPCs. The
to ensure that a game follows a coherent storyline, is in keeping possible lnteractlo_n§ among th'? NPCs thems_elves, to say nothing
with the author’s desires, and offers a high degree of replayability. ofthe player, are difficult to predict and contrql in games of any rea-
Although we show that suboptimal greedy strategies will fail sonable size. ,_erama manageadd_resses this problem by acting
in some cases, we validate previous work that suggests that they?S @ qentral point of conj[rpl, watching the progress of the game and
can work well in practice. We also show that our new algorithm _directing the agents’ activity to ensure a coherent story. While some
provides guaranteed accuracy even in those cases, with little ad_drarlna-management systebms ccl)(ntrc;I the gamer;s pfrc;]gre_ss fairly Idl-
ditional computational cost. Further, we illustrate how this new €Ctly [10, 23, 11], a number take the approach of having mostly
approach can be applied online, eliminating the memory-intensive autonomous characters that are sometimes given direction by a cen-

: ; : ; tral coordinator [1, 22, 5, 12, 13, 8, 17].
offline sampling necessary in the previous approach. PEer T Loy 29 Oy
Ping y P PP One line of work [1, 22, 5, 12, 13]—known as declarative opti-

mization-based drama management (DODM)—poses drama man-

Categorles and SUbJeCt Descrlptors agement as an optimization problem. The drama manager has a set

1.2.1 [Artificial Intelligence ]. Applications and Expert Systems—  of actions it can take to intervene in the world, and a way of eval-
GamesG.3 [Mathematics of Computing]: Probability and Statis- uating the quality of stories. The optimal actions are the ones that
tics—Markov processesl).5 [Computer Applications]: Arts and maximize expected story quality. Although this approach displays
Humanities—Fine arts promising results, one problem is that if the drama manag®ois
effective in its task, it may manage to bring about the same opti-
General Terms mal story each time, severely limiting replayability. One attempt to

address the problem [12] boosts the rating of stories in which the
player has many opportunities to change the direction of the story.
This approach increases the chances that the player will see a differ-

Algorithms, Theory, Performance

Keywords ent story in repeated plays, at least if she plays differently. On the
Markov decision processes, interactive entertainmentecooptimization other hand, a player who repeats many of the same actions might

notice the same game response, giving the undesirable impression
1. INTRODUCTION of a highly predictable game.

A more direct approach is to start with a distribution over possi-
ble stories and optimize the drama manager’s use of actions so that
it comes as close as possible to the target distribution. A frame-
work for addressing this problem Targeted Trajectory Distribu-
tion Markov Decision Processé$TD-MDPs). Given an underly-
ing Markov Decision Process (here, an abstract model of the story

Multi-agent systems often require coordination to ensure that a
multitude of agents will work together in a globally coherent man-
ner. There are a number of strategies for such coordination, ranging

Permission to make digital or hard copies of all or part of thizkfor space) and a desired distribution over trajectories through its state
personal or classroom use is granted without fee providatidbpies are space (here, a distribution of stories), a solutionto a TTD-MDP is a
not made or distributed for profit or commercial advantage aatidbpies stochastic policy that chooses the actions that result in a distribution

bear this notice and the full citation on the first page. Toyootherwise, to

republish, to post on servers or to redistribute to listguiees prior specific of trajectories as close as possible to the target [18].
permissic;n and/or a fee. The original algorithm for solving TTD-MDPs performs quite
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the solution to a TTD-MDP in any moderately complex domain

requires sampling a tree of possible trajectories. Computing the

full tree may not be feasible. Sampling only a part of the trajectory
space can lead to “falling off” the trajectory space where a policy

has been computed, necessitating some other online solution for

recovery. Second, current solutions seek only to minimize local

policy error at each place where the agent coordinator can take an

action, rather than finding actions that are globally optimal. Worse,
the current solutions do not even provably minimize local error.

Our main contribution in this paper is to show that one can mini-
mize the global L-divergence between the target distribution and
the distribution induced by a TTD-MDP policy, using a procedure
that only optimizes locally. We show that the empirical perfor-
mance gain is only minor in our test domains, but the optimal so-
lution can be guaranteed with little additional computational effort.
Using this new procedure, we can also identify conditions under
which one can efficiently compute the global optimum incam
line fashion, eliminating the need for memory-intensive sampling.
Thus, we hope that we can apply TTD-MDPs to a larger class of
agent-coordination problems.

In the next sections, we provide a detailed overview of previous
work on both drama management and TTD-MDPs. We then de-
rive the K L-optimal solution to a TTD-MDP and discuss its online
variant. We present an empirical comparison of fi&-optimal
approach with two variants of previous algorithms. Finally, we
conclude by discussing related and future work.

2. BACKGROUND

Here, we describéeclarative optimization-based drama man-
agemen{DODM) as well as TTD-MDPs. In describing DODM,
we aim to provide context for the use of TTD-MDPs. In describing
TTD-MDPs, we wish to introduce the technical details necessary
to understand our contribution.

2.1 Drama Management

In DODM, a story is represented as a sequence of disptete
points[13]. In this framework, there isd&rama manage(DM) that
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Figure 1: A 3x 3 gridworld with deterministic actions Rightand
Up, along with the resulting trajectory tree.
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tance to the drama manager is #gected outcomef taking an
action. Typically, DM actions can take one of three forroguse
deny or hint. A cause action causes its target to happen with prob-
ability 1.0. When a particular plot point is denied by the DM, it is
assumed that it will never happen. When the DM employs a hint
action, the result is a modification of the distribution over player-
caused plot-points toward the plot point that is hinted by the DM.

DODM also requires an author-supplied evaluation function. This
function takes as input the sequence of plot points and history of
DM actions and outputs a quality score. Through this evaluation
function, the author specifies what it means to be a good story. In
practice, the evaluation function is a linear combination of features
over plot point sequences. For example, the author of a mystery
game may assign a higher score to sequences where tension is built
slowly followed by a rapid burst of revelations.

The specific details of how plot points, DM actions, and eval-
uation functions are specified in a concrete game are beyond the
scope of this paper; however, it is important to understand that all
of these components relate directly to the specification of an MDP:
Statescorrespond to sequences of plot points in DODAdtions
correspond to DM actiongjransitions correspond to a probabilis-
tic user model; anRewardscorrespond to story evaluations.

2.2 TTD-MDPs

has a set of requests it can make of non-player characters (NPC) A traditional MDP is defined by a tuplgS, A, P, R), whereS
that are concretely implemented as agents in a game world. Thejs a set of statesd is a set of actionsP : {Sx Ax S8} —[0,1]

DM acts as coordinator for the NPC agents.

Plot points represent important events that can occur in the story.

They may involve a player uncovering information, finding an ob-
ject, or moving to a location. Plot points are abstractions of con-

is a transition function, and®® : S — R is a reward function.

The solution to an MDP is a policy : S — A. An optimal policy

ensures that the agent receives maximal long-term expected reward
A TTD-MDP is similarly defined by a tuplé7, A, P, P(T)),

crete events happening in the game world. Finding a safe could with statesT that are (possibly partial) finite-length trajectories of
involve a number of concrete actions by a player, such as enteringMDP states; a set of actions; a transition modeP; and a target

the room in which it’s located, exploring the room, possibly exam-
ining various objects in the room, searching the bookshelf on the
wall, and finally moving the book behind which the safe is hid-

distribution over complete trajectorig3(7 ). The target distribu-
tion in a TTD-MDP replaces the reward function in a traditional
MDP. The solution to a TTD-MDP is a policy : 7 — P(.A) pro-

den. The drama manager does not need to know the details of allyiding a distribution over actions in every state. The optimal policy
these actions, as most do not impact the progression of the story;results in long-term behavior as close to the target distribution as
instead, it only senses the abstract plot point. Plot points also havepossible (we define “closeness” more rigorously later).
precedence constraints. For example, the end must occur after the Any finite-length discrete-time MDP can be converted to a TTD-
beginning, and a safe cannot be opened without its key. Note thatMDP.! Consider an MDP with a set of stat§sand sets of actions

not all plot points need occur during any particular game episode.
The set of DM actions is exactly the the set of requests to which

available in each statd, the probabilityP; 1 (s) that the process
is in states” at timei + 1 is defined recursively by:

an NPC agent can respond to, as implemented by the game author.

For example, the DM can request an NPC to begin or avoid a con-
versation, request a door to be unlocked or locked, and so on. DM
actions are also abstract and constrained. For example, the DM ac-

tion hint-safe-locatiorshould not be applied after the safe has been
found. Furtherhint-safe-locatiormay be realized as an entire se-
ries of concrete actions by an NPC ageag( drawing a player
into a conversation in which a hint may be dropped). Of impor-

Pia(s) = Y (P(s'la,s) - P(als) - Pi(s))

VseS,ac A,

@

where P(s’|a, s) is the transition model encoding the dynamics

*Actually, we can solve infinite length TTD-MDPs under certain
conditions; however, this capability has not been necessary for any
of the applications of TTD-MDPs that we have considered so far.



of the world andP(als) is the policy under the agent's control  Algorithm 1 Algorithm to minimize localL;.

(usually written asT'(s’, a, s) and (s, a), respectively). If we 1: Build a (complete if possible) tree of trajectories. If a coatpltree is
assume (as is commonly done) that the policy is deterministic, we not possible, sample the tree from the target distribution.

obtain a common form of Equation 1, rewritten ag;Jrl(s') = 2: Initialize each leaf node (complete trajectory) with itgygtrprobability
Yyses P(s'Im(s), 9). ).

. . . . . In reverse topological order:
Because in TTD-MDPs we are interested in trajectories, we can 3: for Everyt do

simply consider the history of the MDP states asthe TTD-MDP tra-  4:  for Every child¢/ of trajectoryt do
7

jectories, resulting in a TTD-MDP where each trajectory represents 5: Condition Equation 2 ot

a sequence of states in the underlying MDP, optionally including a

history of the actions taken. Dealing with trajectories also means P(ti|t) = > (P(tjla,t) - P(alt))
that the “state” space of the TTD-MDP forms a tree. We can thus VacAy

restate Equation 1 for TTD-MDPs: 6:  endfor

7.  This forms a system df7;/ | linear equations ifLA¢| unknowns:

P(t')= Y (P(t'|a,t)- P(alt)) - P(t). @)

Va€ A

In other words, for every trajectory, P(t'|a, t) is nonzero for ex- which can be solved for using standard linear algebra.
actly onet < ¢’ that is its prefix. This observation follows from ~_8: end for
the fact that each trajectory represents a unique sequence of states
s1,...,5|¢ and therefore has a unique prefix. Thus, the summa- acton 3 acton 3
tion need only account for possible actions taken in the preceding
trajectory rather than actions in multiple MDP states. Because each
trajectory has a fixed length and can therefore appear at only one
specific time, we can drop thesubscripts.

Trajectories represent total history traces of an online decision
making process. Consider Figure 13 & 3 gridworld where there
are two deterministic actionsnove right (Randmove up (U)The

P(t}t) = P(t{]a,t) - 7

right side of the figure depicts the correspondirgjectory tree A action 2 acton 1| | action 2 acton 1
trajectory tree is simply a graphical representation of the valid tra- (@) Symmetric Case  (b) Asymmetric Case
jectories and the prefix relationship that governs partial trajectories.

In this example valid trajectories have initial statand termi- Figure 2: Geometric view of the normalization procedure.

nating stated. Let us first consider the partial trajectary®s 2. It

is a prefix of two immediate subsequent partial trajectoriesi{

2 & zand1 £ 2 L 5) as well as three other partial trajectories  construct a policyr;(a) = P(a|t) for every partial trajectory in

and three complete trajectories. 7. When an exact solution exists, the algorithm will return an opti-
Note that a state in the underlying world may appear multiple mal policy; however, when this is not possible, undesirable behav-

times in the trajectory tree yet participate in distinct trajectories. ior can result. For example, consider a partial trajectoryhree

Consider both appearances of state 5, for instance. The one on thesubsequent trajectori¢s, ¢2, t3 and three actions; , a2, az whose

left represents the partial trajectary™ 2 2 s whereas the oneon  linear system is defined by:

the right represents the partial trajectary’s 4 £, 5; they depict

the same worldtate but they are differertrajectoriesbecause the 0.0 05 05 0.0 .
process arrived to that state along a different path. The power of 03333 | = 0.0 0.5 0.5 | -7 3)
considering trajectories rather than states is we can make decisions 0.6667 05 0.0 0.5
based on not only where you are but also how you got there. The solution vector
To complete the TTD-MDP specification, we need a target dis-
tribution. There are a variety of ways one might imagine deriving 0.3333
such a distribution; however, in this work we will focus on the case = | —0.3333
where a distribution has been pre-specified and may be queried (al- 1.0000

though we do not assume we can sample from it). does not represent a probability distribution.

While this solution is not a vector of probabilities, it does have

3. MINIMIZING ERRORS IN TTD-MDPS an interpretation: achieving the desired distribution requiresithat

Unfortunately, it is not always possible to find a stochastic pol- be “undone” some percentage of the time. Because that is impossi-
icy that exactly solves a TTD-MDP. Imagine that for a given tra- ble, the original algorithm replaces any negative values with zeros,
jectory, ', we have two trajectories we may rea¢h,andt,, and renormalizing the resulting vector to create a distribution.
two actions we may use, andas. Our target isP(t1) = 1.0 and The procedure is an attempt to quickly minimize the error
P(t2) = 0.0. If botha, andaz have non-zero probability of transi-  measured ovelY — Y||1 = ||P(tila,t) - T — Y||1 whereY is
tioning tot. from¢’ then it is impossible to construct a distribution  the distribution of trajectories for a particular choice of poligy
overai,az that will yield our desired distribution ovet, 5. In andY is the desired distribution. Although the procedure performs
this section we will review a previous attempt to address this prob- well empirically, it is not guaranteed to minimiZg error.
lem, and derive an algorithm that provably minimizes global error. Figures 2(a) & 2(b) illustrate why. These figures provide a geo-

. metric interpretation of the normalization step. The solution space

3.1 APrevious Attempt to the linear system lies somewhere on a hyperplane constrained

The original formulation of TTD-MDPs used Algorithm 1 to by the transition matrix. Because we want the solution to be prob-



abilities, the region of valid solutions on this hyperplane must lie objective function for optimization then becomes:
somewhere between 0 and 1 on each of the axes. In the case pre-

sented in Equation 3, we have a situation where the probability mgXZP(T) logq(r) = mgxzp(f) log Hw(t)
restriction is not met. This is depicted in the figures by the green T T t27

hexagon farthest.to the right... In Figure 2(a) we depict a situation — mapr(r) Z log w(t)
where symmetry in the transition matrix results in an optimal solu- ™ = Pl

tion and in Figure 2(b) we depict a situation where this symmetry a

does not exist. The normalization procedure is represented by the = mj}XZ ZP(T) log w(t)
dashed blue line from the solution dot to the action which received Tot=3T

negative mass. The intuition here is that by assigning zero mass toNote that a partial trajectorycontributeg(7) log w(t) to the sum
the action whose solution is negative and normalizing we are main- for each complete trajectory for which it is a prefix. We can
taining the probabilities of the other two actions in the same relative gefine a function over complete trajectories summarizing the factor

proportion. On the other hand, the optimal solution is the pointin of Jog «(t) thatt contributesm(t) = > .=, p(7). Our objective
the valid region of the hyperplane that is closest to the actual so- fynction is then: -

lution (i.e. lies on a perpendicular line from the boundary of the

hyperplane to the solution point). This optimal result is depicted mfxzm(t) logw(t) ©)

by the yellow square that lies on the hyperplane boundary. The ¢

optimal answer is depicted by the blue arrow. Note that in the sym- Note thatm(t) represents the total probability mass contained in
metric case, the location of the optimal solution and the normalized the subtree rooted at Now, obtaining the optimal policy is simply
solution are the same. In the asymmetric case, the location of thea matter of performing aargmax . on the objective function.

normalized solution does not coincide with the optimal solution. Having summarized and isolated the contribution of an individ-
To achieve true local optimality, it is necessary to solve a con- ual trajectoryt’ to the objective, we could proceed using a naive
strained optimization of thé&, error. The objective function is: approach and optimize for each trajectory independently, thus op-
timizing their sum; however, this procedure ignores the fact that
min | P(ti|t) — P(t]a,t) - 7|x 4 optimizing for one trajectory may come at the cost of sacrificing
37

the optimality of a sibling trajectory. Fortunately, optimizing for a
trajectoryt’ is only constrained by the optimization of its sibling
trajectories, and no others because the local stochastic policy must
satisfy a sum-to-one constraint. This insight enables us to con-
sider trajectories by groups of siblings—precisely the same group-
ing used by the earlier approach that sought to minimize légal
: : error. Fortunately, we have two distinct advantages: 1) the groups

3.2 A KL-OptImal Algorlthm o of siblings can be solved for imnyorder (there is no restriction that

Although we now have a procedure to minimize lo€alerror, oy must start with the leaves and work towards the root); and 2)
no guarantees can be made regarding global error. In this sectiongo|ying the local optimizations is guaranteed to produce the glob-

we present an algorithm for solving TTD-MDPs based on minimiz- ||y optimal setting of the parameters. The local optimization is:
ing theKullback Liebler divergenceThe K L-divergence between

subject to) > m(a) = 1 and0 < m(a) < 1. Standard tech-
niques exist to reduce this objective function to a constrained linear
program [2]. This optimization procedure replaces Step 7 in Algo-
rithm 1 and is guaranteed to minimileecal L1 error.

two probability distribution(z) andg(z) is defined as: argmax Y _ m(t') logw(t') (10)
Ty
Dirlole) = Soa)loz 243 (5) = argmax 3 m(t)log S P(at) - m(a) (1)
Ty a

Zp(m) log p(z) — Zp(x) log q(x) (6) where we have used— t’ to indicate that’ is a child oft. This

© x objective is convex, so Equation 10 can be solved using a standard
technique for constrained convex optimization [2]. Thus, we yield
a K L-optimal offline algorithm by replacing Step 7 of Algorithm 1
with this local K L-based optimization.

One potential problem arises whefr) is forced to be zero for a
complete trajectory with p(7) # 0. This occurs when no actions
available at a trajectorywill move us to a child’, i.e. w(t') = 0.

Dk (p|lg) is undefined due to the division by zero. Thus all pos-
sible approximations seem equally bad, preventing us from making
progress towards a solution. Luckily, this problem can be elimi-
o(r) = H w(t) @ nated by preprocessing and reformulating each local optimization
t=r to eliminate child trajectorie$’ that can never be reached. Intu-

K L-divergence is not a true distance, as it is asymmetric; however,
it is a well-understood measure with several important properties.
In particular, it is consistent, always non-negative and zero only
whenp andq are equal. If we think op as a base distribution
then Dk 1, measures how wef] approximates it, by measuring the
entropy that remains in. In our casep is the target distribution
andgq is our approximation of it. In TTD-MDPg is:

where w(t)) = Z P('|a,t) - m(a) (8) itively, ¢’ should not be represented in the trajectory tree if it cannot
- ever be reached from In fact, in most domains (including all of
the domains we have used) this issue does not arise at all because
Here, T represents complete trajectories whiland¢’ are (par- of the process by which the trajectory trees are generated.
tial or complete) trajectories. The probability(t') represents the . .
frequency with whicht’ is targeted when the process ig altt com- 3.3 AnOnline Algorlthm

bines information about the probabilistic policy and world dynam- We now describe how this approach can be applied in an on-
ics att. Thus, the product of these one-step transition frequencies, line fashion, eliminating the need for the potentially costly offline
w(t'), yields the probability of a complete trajectoryr). Our sampling step employed by earlier techniques. For example, in the



drama management domain, it would be undesirable to have to con-manager to target only stories that contain a certain plot pdint

struct extremely large trajectory trees on the player’'s machine.

As formulated, we requiren(t) to be available for each local
optimization. The requirement is actually weaker—all that is nec-
essary is a function that, for a given parent trajectgrgives the
relativemasses required for each childtof

Below we derive an online algorithm when(t) can be com-
puted quickly; however, we note that even wheit) cannot be
computed efficiently, the resource requirements of Ahk-based
offline algorithm are no worse than in previous work. By process-
ing the trajectories in the same order as befor propagating
upwards from the leaves) we are still able to calculaterthe)
values as we need them, because of the following properties:

m(t) = Zm(t/) (12)
m(r) = p(7) 13)

which follow from the definition ofm(¢). In the event that the
whole trajectory tree does not fit into memory, we can employ the
same sampling technique used in the earlier approach.

To derive the online algorithm, one only needs to recall that we
achieve the globally< L-optimal solution regardless of the order
in which we perform the local optimizations. One could start by

with uniform probability. Given a partial trajectotty we can tell
whether or notA has occurred through simple inspection. Af
has occurred, we know that all complete trajectories subsequent
to ¢ will have non-zero mass. Thus, via a counting argument, we
can efficiently determinen(¢). If A has notoccurred, because all
stories occur with uniform probability, we can employ a combina-
torial argument to calculate the number of subsequent trajectories
that containA. The applicability of this authorial idiom to drama
management is the subject of ongoing research.

Another approach is to usmline sampling An estimaten(t)
of m(¢) can be computed by constructing an approximate trajec-
tory tree built from simulated complete trajectories collected in a
background thread. This approach leverages the factittigtonly
needs to provideelative values. As such, the samples need only
provide a good representation of the space, rather than provide a
perfect estimate ofn(t). Initial experiments on this approach are
promising.

4. RESULTS

In this section, we present results that examine the solution qual-
ity and performance characteristics of the proposed algorithm ver-
sus the previous algorithm as well as a baseline algorithm.

processing the root of the trajectory tree, then process the children . .
of the root, and so on, to compute a policy for each node in the tree. 4.1 Solution Qua“ty

If m(t) can be computed efficiently (or in the background), then  To verify that the/ L approach performs well in practice, we ran
we can do even better by only solving the local optimizations that experiments on a synthetic grid world and on the drama manage-
we encounter during an episode. This is done by interleaving the ment MDP studied in [13]. The synthetic grid world is the same
local optimization steps with taking actions in the world—the lo- discussed in Section 2.2 and shown in Figure 1. As a reminder,
cal optimization tells us how to take the next action, and the action there are at most two actions in every state (“move right” and “move
places us at a new node in the trajectory tree. Thus, we only solveup”) and a known transition modé(s’|a, s).

the local optimization for trajectories we actually encounteralonga  For each trial we selected a given complete trajectomyith
particular trajectory (root-to-leaf path in the trajectory tree), rather probability . Each selected trajectory was given uniform target
thanall optimizations in the trajectory tree. In terms of number probability and the remainder given zero target probability. We
of optimizations to solve, we never do worse than the previous ap- varied § from 0.05 to 1.0. We then built the tree and computed
proach (as the size of any trajectory is bounded by the size of thethe policy according to the locdl; approach, the locak’ L ap-
tree), and typically we will do much better—for a fairly balanced proach, and a simple algorithm that implements a uniform policy.
and complete tree with heightand branching factdr, a trajectory We varied the size of the grid fromx&% to 9x9. For each set of

will have sizeh whereas the tree will have size roughly equai’to parameters, we ran 10 trials and averaged the results.

The results are presented in Figure 3. As the percentage of tra-
jectories targeted increases, bdth and K L error decrease. This
is expected, as any nondeterminism in action outcomes can result
in a terminal trajectory with zero desired probability, so reducing
the number of zero mass terminal trajectories reduces error. Note
that the localL; and K'L approaches perform nearly identically.
As expected, the baseline algorithm does far worse than the other
two, thus showing that at least the domain is not trivial.

To test on a computationally intractable problem, we used a ver-
sion of theAnchorheadstory previously explored using reinforce-
ment learning [13]. In our modeAnchorheacdhas 29 plot points
and 90 drama manager actions. The evaluation function is a com-
bination of features, such as the spatial locality of action, having
plot points occur in an order that motivates later events, and so on;
more details on the general framework and evaluation functions are

Algorithm 2 Online algorithm to minimize globak L error.

1: t « start state
2: while t is not a complete trajectoigyo
3:  Compute the optimal local stochastic policy:

m; = argmax m(t') lo P(t'|a,t) - m(a
t gﬂtZ()gZ(\)t()

t—t/ a

Sample an action from 7.

Take actioru in the world, which will transition probabilistically to
a new trajectory’ according toP(t'|a, t).

t—t'

4
5:
6:
7: end while

Note there is no free lunch: without extra information about the
nature of the trajectories or the analytic structure@f), we are given by Nelson & Mateas [12].
still limited by the complexity of the summation to compuitgt) To evaluate the effect of a drama manager, we run simulated sto-
from the tree. Below we briefly discuss a few approaches to make ries and plot a distribution of story qualities. The drama manager’s

the online algorithm feasible.

First, we could requiren(t) to be of a certain easily computable
form. Specifically, we could require tha{r) be constructed in
such a way so that:(¢) can be computed solely from a partial tra-
jectoryt. Consider a simple game exactly 10 plot points in length

goal is to increase the frequency of highly-rated stories and de-
crease the frequency of low-rated stories. In particular, we would
prefer that very low-rated stories never happen, while achieving a
good distribution over highly-rated stories. We use the evaluation
function and these preferences to define a TTD-MDP: any trajec-

and with a fixed branching factor. Suppose we would like a drama tory of plot points that evaluates below a threshold has a target fre-
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Figure 3: Error plots for the 9 x9 grid world. The old and new methods perform nearly identically, thustheir plots overlap. The
maximum difference between the two w.r.t.L, erroris 2.48 x 10~%; w.r.t. KL error, 9.17 x 10~°. The uniform action policy is much

worse in all case, by both measures.

guency of 0, while those above the threshold should all appear, with lowing experiments were run on an Intel Pentium Xeon Processor

the highly-rated ones more likely.
We build a sampled trajectory tree to both estimatg) by sum-
mation and to solve for the TTD-MDP policy. Unfortunately, dur-

at 3.8GHz with a 2,048 KB cache and 8GB of RAM (although only
1GB was allocated to the Java 1.5.€r ver JVM).
First, we examine the runtime &f-sub, kl-opt and a uniform

ing evaluation or actual gameplay, it is often the case that nondeter-random policy on the grid world domain. Table 1 contains the re-

minism in our player model causes us to encounter story trajecto- sults of those experiments. Note the rapid growth in running time

ries not in the tree. In this event, the fallback policy for the drama for all of the approaches. This is due to the exponential increase in

manager is to take no action for the remainder of the game. We opttrajectory tree size as the size of the grid world increases. Specifi-

to ignore the recovery mechanism considered by Role¢gk[18] cally, for ann x n grid world, there ar ngf)ﬁ?jl'l), = O(n!) local

in favor of a “pure” comparison of the optimization methods. optimizations to be solved. In the caselbisub, each of the local
Again, the results for the old and new algorithm were nearly

_ ~gain, : ¢ ¢ Y computations involves solving a system of linear equations, which
indistinguishable, consistent with what we observed with the grid can be accomplished relatively efficientlyo4a?®) for a naive im-
world. It is possible, however, to construct cases wiaer&oclo-

s pe ¢ _ ! plementation where is the number of actions. On the other hand,
cal optimization fails. The following examples use 3 actions and 3 thekl-opt technique requires a polynomial number of stéps.
successor states. We will udesubto refer to the previous, subop-

timal matrix-based solutiori-opt to refer to the correck,-based Total ime (ms) Normalized time (ms)
solution outlined in Equation 4; ankl-opt to refer to theK L- Size uni [ I11-sub kl-opt uni | 11-sub | kl-opt
based algorithm presented in this paper. We present the results of| 5 x5 1.90 2.58 76.88 | 0.0271| 0.0369 | 1.0983
the three approaches on two pathological examples in Figure 4. 6 X6 722] 810| 233.16] 0.0287] 0.0321| 0.9252
In the first example (Figure 4(a}jl-opt does better thati-sub 7xT7 ] 3430| 3452| 840.48] 0.0371] 0.0374] 0.9096
w.r.t. L; error. In fact, the difference i, error between the two S i S %g;gg %g;?g éﬁggg ggggg 882?2 834233

is 0.5, which is 25% of the maximum possihle error (2.0). In

the second example (Figure 4(b)), thoudfopt cannot bealtl-opt
w.r.t. L error (by definition), idoesdo better than botH-opt and
I1-subw.r.t. KL error and does equally as well @dn error.

In both examples, the local transition matrix makes it very diffi-
cult to reach the target distribution. The first row of the first transi-
tion matrix contains relatively large numbers compared to the target
probability mass for the first row of the target probability vector. A
similar situation occurs in the second example.

In the real-world domains we have examined, this situation does
not seem to arise often. It could be that any local technique that at-
tempts to match the local target distribution according to a reason-
able error measure will perform quite well in practice on the sorts
of problems we have explored; however, many such techniques wil
fail in exactly the difficult cases. By contrast, we have derived an
algorithm that provides theoretical guarantees and, as we shall see
remains computationally feasible even within the performance con-

straints of an interactive drama management system. - .
g 4 as twosecondsetween decision points for the drama manager to
4.2 Execution Time select an action. These results indicate that the Ikkapt ap-
Given that both the theoretically grounded technique and the un- Proach can execute in less than a millisecond, easily meeting the

grounded technique perform similarly in the types of domains we 2the polynomial is a function of a number of parameters of the
have studied, we seek to characterize the computational tradeoffsoptimization and the condition number of the objective function’s
that are made when one algorithm is used over the other. The fol- Hessian. A complete analysis is beyond the scope of this paper.

Table 1: Average computation time for the uniform baseline,
I1-opt, and kl-opt algorithms for various grid sizes.

As shown in Table 1, the run time for tik&opt approach is sig-
nificantly higher. To examine this effect more closely, consider the
second column, which presents the normalized computation time
(i.e. time per local optimization). Note how for thd-opt ap-
proach, the normalized running time remains essentially constant
for all grid sizes. However, for the baseline and thesub ap-
proach, the normalized run time jumps significantly for the largest
grid size (marked in bold in the table). We attribute this to cache
| misses. The increased time required per computation fddtbpt
approach hides the latency encountered for a cache miss.

Although kl-opt requires roughly thirty times the computation
thanl1-sub per decision point, we are well under what is neces-
sitated by the domain; other researchers have allocated as much




0.0027 0.7432 0.2535 0.5272 0.4177 0.1130 0.0025 0.0085
Equation: 0.3586 = 0.1626 0.2175 0.2172 - T Equation: 0.2182 = 0.6178 0.5717 0.5559 - T

0.6388 0.0942 0.5290 0.2556 0.3640 0.2692 0.4258 0.4356
Method: 11-sub 11-opt kl-opt Method: 11-sub 11-opt kl-opt

L error: 1.0491 0.5017 0.5017 L4 error: 0.8037 0.7286 0.7991

K L error: 0.7507 0.2875 0.2875 K L error: 1.1039 0.6444 0.4288
0.0 0.0 0.0 0.0709 0.4304 1.0
Solution vector: 0.0 1.0 1.0 Solution vector: 0.0 0.0 0.0
1.0 0.0 0.0 0.9291 0.5697 0.0

(a) Example 1 (b) Example 2

Figure 4: Two pathological examples where there is a quantifiable diffrence between the results of the three optimization approaches
The tables contain the equations that represent the local optimiz#on, the solution vector found by each of the three methods, and
the error associated with each of the solution vectors.

constraints of a real-time interactive drama management system.trees are then combined to create estimated values for particular ac-
Further, this approach retains is optimal properties even when usedtions. In our case, the trajectory tree is sampled uniformly from the
online, so the increased time per local computation is only a linear state of possible trajectories and represents possible paths through
penalty in practice. the space—not a single estimated path based on observations.
Littman [7] uses Markov games as a framework for exploring
reinforcement learning in the presence of multiple adaptive agents.

5. RELATED WORK Our formulation of TTD-MDPs is similar in that it acknowledges
The inspiration for this work is drawn from two fields: drama a source of randomness outside the environment itself, finding a
management and Markov decision processes. solution that requires a probabilistic policy. On the other hand, this

work was not directly concerned with distributions over outcomes,

Drama Management.Using a drama manager to guide interactive ang assumed a zero-sum game. In the formulation of the drama-
entertainment was first proposed in 1986 by Laurel [6]. The partic- management problem, the game is not zero-sum: the player and the
ular formalism based on plot points, DM actions, and an evaluation gragma manager are, in effect, playing completely different games.
function that we use was proposedsagrch-basedrama manage- Lastly, if we think of TTD-MDPs as modeling the dynamics
ment (SBDM) by Bates [1]. There are other drama-management of an MDP while holding non-traditional elements fixed, we find
approaches: Mateas & Stern useest-basedirama manager [10];  common ground with recent work in inverse reinforcement learn-
Mott & Lester use a decision-theoretic planner for their drama man- ing (IRL) [14] and extended Markov tracking (EMT) [15, 16]. In
ager [11]; Younget al. use a goal-based planning drama man- |RL, the goal is to observe the policy of an agent and infer a re-
ager [23]; and Magerko uses an architecture called IDS based on ayard function that would lead to its behavior. In the drama man-
“playwriting expert system” [8]. For a somewnhat dated description agement case, non-determinism arises from both the user and DM
of drama management techniques see Mateas’ 1999 survey [9].  actions. If we think of the desired distribution as fixed, then the

The SBDM formulation of the drama-management problem was non-determinism that is not explained by the user model is exactly
posed as an optimization problem to be solved using a minimax the distribution over our own actions. Similarly, in EMT, the goal
game-tl’ee-like Search. It was Studied eXtenSiVer in the 1990s by is to se|ect the 0pt|ma| System dynam|w(probab|“ty Of state
Weyhrauch [22]. Weyhrauch discovered that full-depth search was gjven another state) given a sequence of observations in a partially
intractable for any reasonable problem and proposed SAS+, a tech-gpservable environment. Once the optimal dynamics have been

nique that used static evaluation sampling. o identified, the task becomes the probabilistic selection of an action
Lamstein & Mateas proposed reviving the technique in 2004 [5] from a distribution that fits the desired dynamics.

but later work by Nelson & Mateas showed that the approach did

not scale to other story worlds. This result led to the develop-

ment of DODM [13] where the sampling search was replaced with 6. CONCLUSIONS AND FUTURE WORK
reinforcement-learning in the spirit of Tesauro’s TD-Gammon [20, ] S o

19, 21]. Finally, Robertet al. developed TTD-MDPs to address Targeted Trajectory Distribution Markov Decision Procesass

the issue of replayability through variety of experience [18]. well-suited to be a f_ramgwork for centrally coo_r_dinating multia- _
gent systems, especially in cases where reusability of the system is

TTD-MDPs. The formulation of TTD-MDPs as optimizing aprob-  important, such as interactive games. In this paper, we have iden-
abilistic policy was inspired by a number of works from the MDP tified some shortcomings of previous TTD-MDP algorithms, and
community. Specifically, Isbekt al. [3] developedCobot a so- derived a new algorithm that minimizes glob@IL-divergence. In
cial reinforcement-learning agent. In that work, Cobot was tasked addition, we discussed the conditions that enable efficient online
with random action selection during episodes of user interaction. variations of the algorithm.
Cobot had “internal” models of user preferences represented by As the probability distribution is of central importance to a good
state-action Q-values that were used to induce a distribution over TTD-MDP-based system, itis necessary to make it easy for design-
actions. This distribution results in action selection roughly pro- ers to specify target distributions. This can take a number of dif-
portional to user satisfaction but does not allow the targeting of ferent directions. When converting from an optimization-based co-
specific distributions over actions or actions sequences. ordinator to a TTD-MDP-based one, a natural approach is to make
Kearns, Mansour, & Ng [4] developed a method for approximate the distribution be some function of the evaluation function as we
planning in POMDPs based on a sampled “trajectory tree”. The have done; however, writing an evaluation function may not always
concept of a sampled trajectory tree in that work differs from ours. be easy, and the distribution induced from one may not lead to the
Their trajectory trees are sampled from a generative model of ob- distribution the designer really intended. Thus, we are interested in
servations and transitions and represent a single episode. Multiplepursuing methods for preference elicitation.
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