
Recombinable Game Mechanics for Automated Design Support∗

Mark J. Nelson
College of Computing

Georgia Institute of Technology
mnelson@cc.gatech.edu

Michael Mateas
Computer Science Department

University of California, Santa Cruz
michaelm@soe.ucsc.edu

Abstract

Systems that provide automated game-design support—
whether fully automated game generators, or tools to assist
human designers—must be able to maintain a representation
of a game design and add or remove game mechanics to sup-
port incrementally modifying the game. The system should
then be able to reason about the design to support the de-
signer. For example, it might point out that the set of me-
chanics makes the game unwinnable; or that there’s only one
complex possible way to beat the game; or that some room
is impossible to get to. In addition, the same representation
should be actually playable as a game. Existing game repre-
sentations encode a fairly narrow range of games, most com-
monly symmetric board games; these representations are also
difficult to extend or revise. We propose an architecture based
on the event calculus, a logical representation designed for
reasoning about time in an elaboration-tolerant way, meaning
that designs can be changed by adding or removing sets of
axioms rather than modifying brittle hard-coded representa-
tions. The resulting game design is a declarative specifica-
tion in formal logic, so can be critiqued by making queries
that are answered through logical inference. Since it specifies
the game’s simulation rules, it may be executed by logical
inference as well; if symbols specifying input and graphical
representation are appropriately mapped to input devices and
a graphical display, the same declarative representation can
be executed as a fully interactive, graphical game. We de-
scribe how to organize a library of game-design mechanics
using this event-calculus framework, and describe a simple
tile-based game, showing how it can be easily modified, cri-
tiqued and debugged, and played.

Introduction
Automated and computer-assisted game design are emerg-
ing areas of research. An automated game-design system de-
signs new games by maintaining an internal representation
of a game, which it reasons about and modifies (Pell 1992;
Orwant 2000; Nelson and Mateas 2007; Hom and Marks
2007). A game-design assistant allows a human to drive
the game-design process, but automates common or tedious
tasks and gives feedback and suggestions on the design in

∗Thanks to Adam Smith for helpful conversations and pointers
on various aspects of this research, and to Intel for funding.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

progress (Nelson and Mateas 2008). Both systems require a
significant common back end: They need a way of represent-
ing game designs declaratively so that the system can reason
about aspects of the design in progress; a way of modifying
the designs; and a way of producing actual playable games
from the declarative representation.

Existing systems restrict themselves to representations
designed to capture specific, limited classes of games, such
as two-player symmetric board games (Pell 1992; Hom and
Marks 2007). To deal flexibly with an open-ended class
of games, we propose that there must be a way of defin-
ing reusable and recombinable game design mechanics that
can be added and removed from a design in progress, result-
ing in a design that can be both reasoned about and executed
as a playable game. For example, we might want to take a
two-dimensional, top-down maze game and reconfigure the
walls, add enemies that chase the player through the maze,
add a time limit, and so on. Moreover, adding new mechan-
ics should, as much as possible, not require complex mod-
ification of the existing mechanics, such as re-axiomatizing
the entire domain in formal logic to account for the new me-
chanic. Instead, if we want to take an existing game and add
a time limit to it, we should just be able to tack on a timer
and a rule saying that the game ends when the timer expires.

Our criteria are therefore: a declarative representation (so
we can reason about it) that is elaboration tolerant, meaning
that we can, as much as possible, modify it by adding and re-
moving rules rather than editing rules, especially when they
shouldn’t need to depend on each other (McCarthy 1998).
In addition, the representation should be able to deal with
time naturally, since the progression of time (whether literal
time or turns) is a common feature of games. It turns out that
these are the same goals that drove the development of tem-
poral logics for commonsense reasoning, so we adopt one of
them for our representation, the event calculus. We describe
how to formalize recombinable game mechanics in the event
calculus so that the resulting games are both executable as
fully playable games, and can be critiqued to give feedback
during the game-design process. In addition, we give an ex-
tended example of useful feedback that we can get automat-
ically from a small game in this representation, which itself
may be easily modified to produce markedly different game-
play, which we can again determine automatically.

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference

84



Automated support for game design
Game design typically follows an iterative process. In com-
mercial game design, iterations frequently alternate between
design changes and play-testing. At the prototype stage,
play-testing is focused mainly on finding problems with how
game mechanics interact. Problems can include outright de-
sign bugs, such as the player being able to get themselves
into inconsistent or dead-end situations; or more subtle prob-
lems such as the game being far too hard for the average
player, or completely unbalanced. Some amount of playtest-
ing will likely always be required to gauge subjective re-
sponses of the target audience, but we propose that a useful
proportion of the process could be automated.
A declarative game representation can tell us whether cer-

tain combinations of conditions can come about, and if so,
can generate a gameplay trace showing how. Game design-
ers often use playable prototypes to generate these sorts of
debug traces in play-testing; having the game in a repre-
sentation that can be automatically reasoned about allows
traces with particular properties to be generated on demand.
The simplest feedback is that no trace is possible for some
desired condition—say, a game-mechanic change made the
game unwinnable, which we can determine without the de-
signer having to play through repeatedly to figure that out.
More subjectively, looking at gameplay traces can let us find
things that weren’t supposed to happen; and looking at traces
with particular properties can let us judge subjective proper-
ties. For example, if beating a Zelda-like game never re-
quires more than a single weapon to dispatch all enemies,
that indicates unbalanced game design that renders the rest
of the weapons in the game redundant. Or, if a platformer
can only be cleared using a jump exactly at the maximum of
how far a player can jump, it might be too hard.
Game-design novices are even more in need of design

support. There are tools such as GameMaker and Alice to
ease implementing games, but not any to help with designing
the game mechanics. An inexperienced designer will typi-
cally iterate by trying things out and then playing the result
themselves—a tedious process that slows down experimen-
tation, and often results in undiscovered gameplay bugs left
in the final result. This process could be sped up by giving
designers feedback on common design errors while they’re
implementing. In addition, novice designers could benefit
from a toolkit of common design mechanics to easily exper-
iment with, ideally with suggestions on when to use them.
In both cases, however, feedback from a declarative repre-

sentation can’t fully replace play-testing (even if only by the
designer themselves), so it’s important that the same rep-
resentation be playable as well, at least as a prototype—a
designer is not likely to want to implement a declarative ver-
sion of their game as a separate, unplayable model in addi-
tion to a conventional prototype.

The event calculus
The event calculus is a temporal logic based on fluents,
which are predicates whose truth values vary over time; and
events, which happen at particular instants in time and can
change the truth values of fluents. When modeling games,

fluents represent game state (player position, score, enemy
status, etc.), and events represent either events within the
game (such as a collision, or an enemy being killed) or
player input to the game (such as the player pressing up on
the direction pad). Both fluents and events can have parame-
ters, so for example the fluent At(player, x, y) says that the
object player is at position (x, y).

Semantics
We use the version of the event calculus described by
Mueller (2006), who follows Miller and Shanahan (1999).
Four basic predicates specify the relationships between
timepoints, events, and fluent truth values: Happens(e, t)
says that event e happens at time t; HoldsAt(f, t) says
that fluent f is true at time t; Initiates(e, f, t) says that
if event e occurs at time t, then fluent f will be true af-
ter t; and Terminates(e, f, t) says that if event e occurs
at time t, then fluent f will be false after t. These predicates
can be combined with standard first-order logic to specify
game mechanics. For example, we can say that two objects
collide if they’re ever at the same point: ∀t, o1, o2, x, y :
[HoldsAt(Loc(o1, x, y), t)∧HoldsAt(Loc(o2, x, y), t)] →
Happens(Collide(o1, o2), t).
Fluents follow the “commonsense law of inertia” by de-

fault: their truth values don’t change unless changed by an
event. This is one source of the event calculus’s elabora-
tion tolerance, since inertia keeps us from having to write
axioms saying when every bit of state doesn’t change: If no
rule moves a wall, then it doesn’t move (if we do want it to
move, we just tack on a game mechanic that moves it). In-
ertia can be turned off by two predicates, ReleasedAt and
Releases, which take the same arguments as HoldsAt and
Initiates respectively.
We turn off inertia in two cases: derived game state and

continuous change. Derived state gives shorthand notation
for a combination of other game state elements. Since it
is defined in terms of other game state, it isn’t directly
changed by events, but should change whenever the other
state changes. For example, we might say that a player
can pick up an item if the item is available to be picked up
and the player’s inventory isn’t full. Continuous change is
primary game state, but changes continuously rather than
due to specific events; an example is a missile trajectory.
The event calculus provides two additional axioms to make
such change easier to specify: Trajectory(f1, t1, f2, t2)
specifies that if fluent f1 is initiated by an event at time
t1, then fluent f2 will be true at time t1 + t2. For ex-
ample, we could represent the trajectory of a missile trav-
eling rightwards at a constant one unit per second, start-
ing from the time and position at which it becomes ac-
tive, by: ∀t1, t2, x, y : HoldsAt(At(msl, x, y), t1) →

Trajectory(Active(msl), t1, At(msl, x + t2, y), t2). The
AntiTrajectory predicate is the same, except that the tra-
jectory is initiated when some fluent becomes false.
In addition to the commonsense law of inertia, the event

calculus aims at elaboration tolerance by using circumscrip-
tion, a form of non-monotonic reasoning, to minimize the
extension of the Initiates, Terminates, and Releases
predicates. Informally, this means that events only initiate,

85



terminate, or release fluents when we either explicitly say
they do, or it can be inferred that they do from something
else that we say. While the commonsense law of inertia
allows us to assume that fluents don’t change unless some
event changes them, circumscription also allows us to as-
sume that an event doesn’t change any fluents unless we say
that it does. This keeps us from having to write down, for ex-
ample, statements specifying that the player jumping doesn’t
change the score.

Using the representation
Given an event-calculus formalization of a game, we’d like
to do two main things: play it, and ask questions about it.
Playing a game is done by temporal projection—

simulation forward in time via logical deduction. A full
game will have a set of game mechanics that specify the ini-
tial game state and the rules of state evolution. With recom-
binable mechanics, this translates into a set of event-calculus
statements saying what HoldsAt time t = 0 (the initial con-
figuration of the game world), along with a set of statements
saying when events happen and what state they change (the
game mechanics). To these axioms, we add statements say-
ing what user input events happened at time t = 0 (if any).
We then use circumscription on the Happens predicate,
meaning that we’ll assume events only happen if we explic-
itly said they did (e.g., for user input) or if a game mechanic
makes them happen (e.g., for collisions). From this combi-
nation of statements, we can deduce what the game state is
at time t = 1. We repeat the process to continue to addi-
tional timesteps. The game state at any given time is simply
the truth value of fluents. Since watching a readout of fluent
values is only a “playable” game in a low-level debugging
sense, we graphically display some fluents’ values to pro-
duce the on-screen representation (with the rest remaining
as internal state). For example, if At(sprite, x, y) is true at
the current timestep, we draw sprite at position x, y on the
screen.
Asking questions about a game is done by planning—

finding sequences of events that would make a particular
condition true, via logical abduction (Shanahan 1989). For
example, we can ask if the player can ever get to a partic-
ular position on screen by asking for sequences of events
that would make At(player, 2, 2) true. If we didn’t want the
player to be able to get there at all, the sequence gives us a
debug trace explaining how it could happen. Alternately, we
might have thought it was possible to get there, but didn’t
foresee some of the possible ways of doing so; the traces let
us figure out why. Based on looking at some of them, we
could further refine the planning, and ask for only traces in
which the player gets to position (2, 2) without first having
killed any enemies.
We use Mueller’s Discrete Event Calculus Reasoner to

perform both types of reasoning; it handles a version of the
event calculus with discrete time steps, and compiles to a
boolean satisfiability (SAT) problem (Mueller 2004).

Defining and organizing the mechanics
To specify and reuse game-design mechanics, we need a way
of factoring the game-design process into various compo-

nents, which helps organize the mechanics and relate them
to other aspects of the design.

Factoring game design

In previous work (Nelson and Mateas 2008), we proposed
factoring the game-design process into four areas. A game
consists of abstract mechanics, which specify state and state
evolution; concrete representation, the audiovisual realiza-
tion of game state; thematic content, the real-world refer-
ences a game makes; and control mappings, the ways the
player interacts with the game. For example, an abstract me-
chanic like “being chased” might be represented concretely
by running around a maze to evade an enemy. The maze
might make thematic references to a medieval dungeon, and
control might be via a direction pad. Changing any of these
elements would result in a different version of the game.
We extend this view by noting that concrete representa-

tion may, in addition to directly representing abstract game
state (such as a meter representing an abstract time limit),
also contain concrete mechanics. For example, a two-
dimensional Zelda-style game assumes a number of concrete
mechanics, such as moving around, not being able to move
through certain types of obstacles, collision detection, and
so on. These concrete mechanics can map to elements of the
abstract mechanics; for example, colliding with a coin in the
concrete world abstractly results in picking it up and increas-
ing the player’s money total. Abstract state can also influ-
ence the concrete mechanics; for example, gaining an ability
to walk through walls would modify the concrete collision-
detection mechanics.
A game formalized in the event calculus therefore consists

of abstract mechanics, concrete mechanics, connections be-
tween the two sets of mechanics, mappings from controls
to either or both sets of mechanics, and references to the-
matic elements from both sets of mechanics. Connections
and mappings are themselves a type of game mechanic, the
simplest of which is a causal connection: the player dies
(abstract event) when she collides with an enemy (concrete
event), or moves up (concrete state change) when pressing
up on the direction pad (control event). Thematic mappings
are not represented in event calculus, but instead involve
common-sense reasoning about real-world objects and ref-
erences (Nelson and Mateas 2007; 2008).

Vocabulary and mechanics

To specify mechanics, we first define sets of vocabulary,
which contain fluents representing bits of state, events that
relate to that state, and event-calculus axioms defining the
semantics and relationships of the fluents and events. Indi-
vidual mechanics can then be specified by reference to one
or more sets of vocabulary.
Figure 1 shows several sample sets of vocabulary. The

first represents a simple inventory system. It defines a new
object sort (equivalent to a type in programming languages),
item, which is a subsort of object, the sort we use as a generic
top level for all abstract objects. It also defines a fluent, InIn-
ventory, that specifies whether an item is in the player’s in-
ventory at a particular time, and three events that involve the

86



(defvocab ’inventory

"A simple inventory system."

:sorts ’((item object))

:fluents ’((InInventory item))

:events ’((Gain item)

(Lose item)

(UseOn item object))

:axioms

’((Not (HoldsAt (InInventory item) 0))

(Initiates (Gain item) (InInventory item) time)

(Terminates (Lose item) (InInventory item) time)

(Implies

(Happens (UseOn item object) time)

(HoldsAt (InInventory item) time))))

(defvocab ’tile-world

"A simple 2d tile system."

:sorts ’(sprite)

:fluents ’((At sprite integer integer)

(HasSprite object sprite))

:events ’((Collide sprite sprite))

:axioms

’((Implies

(And (!= sprite1 sprite2)

(HoldsAt (At sprite1 x y) time)

(HoldsAt (At sprite2 x y) time))

(Happens (Collide sprite1 sprite2) time))))

(defvocab ’controller

"A generic controller; four dirs, two buttons."

:events ’(Dpad-up Dpad-down Dpad-left Dpad-right

Button-a Button-b))

Figure 1: Several vocabulary definitions.

inventory, Gain, Lose, and UseOn. The definition is com-
pleted by four axioms that say, respectively: that the inven-
tory is initially empty; that theGain event puts an item in the
inventory; that the Lose event removes it from the inventory;
and that an item can only be used if it’s in the inventory.
The second vocabulary set in Figure 1 defines a simple 2d

tile system. There are sprites, and at any given time they
may be At some position, and it may be true that some ob-
ject HasSprite that sprite; and they may Collide with each
other. The one axiom specifies that if two different sprites
are ever At the same position, then they Collide. Finally,
the third vocabulary set specifies a controller with a four-
directional D-pad and two buttons; the only things we need
in this vocabulary are the six events corresponding to those
six possible input signals. The tile-world vocabulary de-
fines a concrete representation, so we graphically display
its game state (the values of its fluents): at each time t,
if HoldsAt(At(sprite, x, y), t), we display a sprite at tile
(x, y). The controller vocabulary defines input,
Figure 2 shows two mechanics we can define using this

vocabulary. The first, using the inventory vocabulary, makes
an item single-use: If we use an item, we lose it and no
longer have it in the inventory. As shown in this example,
mechanics can be templated. The axioms that implement
this mechanic refer to a template variable ?item; specific in-

(defmechanic ’single-use-item

"Using ?item makes it disappear from inventory."

:vocab ’inventory

:template-vars ’((item ?item))

:axioms

’((Implies (Happens (UseOn ?item object) time)

(Happens (Lose ?item) time))))

(defmechanic ’move-up

"Event ?event moves sprite ?sprite up a tile."

:vocab ’tile-world

:template-vars ’((event ?event)

(sprite ?sprite))

:axioms

’((Implies

(And (HoldsAt (At ?sprite x y) time)

(Happens ?event time))

(And (Initiates (At ?sprite x (- y 1)) time)

(Terminates (At ?sprite x y) time)))))

Figure 2: Game mechanics using the vocabulary in Figure 1.

stances of the mechanic will substitute a specific item for
that variable. The second mechanic, using the tile-world
vocabulary, specifies that some event causes some sprite to
move up a tile; both the event and sprite can be filled in to
make different uses of this mechanic. This particular me-
chanic provides an obvious way to connect concrete me-
chanics with user input: If we specify that the ?event is
Dpad-up, and the ?sprite is the player’s sprite (not shown
in this set of vocabulary), then we’ve added a control me-
chanic. It can be reused in completely different ways as
well, for example to make a wall move up a tile when the
player presses a switch.

An example game
To illustrate prototyping a game with this representation,
we’ll specify a simple game, describe how it can be mod-
ified in a number of ways, and explain the types of auto-
mated feedback we can get to either discover some common
design flaws or verify that they aren’t present. For brevity,
we’ll discuss each area of vocabulary, game mechanic, and
connection, but without showing all the code.

Abstract mechanics
Start with a simple set of abstract mechanics for a short snip-
pet of gameplay. The player has to get a key to open a locked
door, and then once she passes that door, can pass through a
second (unlocked) door to exit the area (and end this mini-
game). We use the inventory system from Figure 1, and add
to that a door vocabulary, which specifies doors that can be
open, closed, locked, or unlocked; the events Open-attempt,
Open, and Close; and the obvious relationships between the
three events and the door state. Finally, add a vocabulary for
talking about the state of the game, in this simple version
just containing PlayerWins and PlayerLoses events.
Using this vocabulary, we specify that there are initially

two doors, both closed, with one locked and one unlocked;

87



and a key, not in the player’s possession. We add several
abstract mechanics for how these objects relate. If the player
uses the key on a locked door, it becomes unlocked (a more
complicated game might also check if the key matched the
door it was being used on). If the player passes through the
door that was initially unlocked, the game ends.

Concrete mechanics
To flesh this game out, we need some concrete mechanics,
and connections between them and the abstract mechanics.
We’ll use a slightly more complicated version of the tile-
world vocabulary from Figure 1, adding a width and height
of the world, and a notion of impassable sprites (things like
walls that other sprites can’t move onto). For convenience,
we define a derived fluent saying whether a particular tile is
Passable, which is true unless the tile is either off the edge
of the world or occupied by an impassable sprite.
Start with six sprites: two walls, two doors, a key, and the

player. We use HasSprite to connect the two door sprites
to the abstract doors they represent, and similarly with the
key and the player (the walls only function in the concrete
mechanics). We say that the wall sprites are impassable. We
add four mechanics giving the obvious effect to the player
pressing the four directions on the D-pad: they move in the
requested direction if the tile in that direction is passable. In
addition, we specify that if the player collides with a sprite
representing an inventory item (the key, in this example), it
gets added to their inventory. Furthermore, any item that’s
added to a player’s inventory has its sprite disappear from
the concrete world. If the player collides with a sprite rep-
resenting a door, they first attempt to use a key on it if they
have a key; and then they attempt to open it. If the door is
still closed, they get bounced back to the tile they were pre-
viously on. Then specify an initial configuration where the
two walls and the locked door block off a corner of the world
in which the unlocked door (which exits from the game) is
located; the player and the key are on the other side.

Critiquing and modifying
Since the game is represented declaratively, we can query it
to exhaustively explore implications of the design. For ex-
ample, can the player win? Planning tells us yes: we can
get a sequence of events leading up to a win. Looking only
at input events, the shortest possible sequence is a sequence
of direction-pad presses that leads to the key, then the locked
door through the wall, then the unlocked exit door. We could
look at series of abstract events too, to see that the item-
gaining and door-unlocking we expect occurs; or at the se-
ries of concrete events, to see the collisions. We can directly
ask whether the abstract game’s sequence of events is as we
intended, too: If we ask if the game can end without the
player having the key, the answer is no. If we make minor
changes to the game, they have the expected effects: remov-
ing the key from the world, or sticking a wall in front of the
door both make winning the game impossible. Of course
some of these answers could be gotten by hand-coding a
lower-level test, such as analyzing reachability of tiles from
other tiles to catch level-design problems. The queries here,
though, can deal with arbitrary changes in mechanics—if

we remove the concrete mechanic that makes colliding with
a key add it to the inventory, we find that winning is impos-
sible despite everything being reachable, since there’s now
no way for the player to pick up the key (a problem with the
mechanics rather than the level design).
Consider another minor change: swap out our controller

vocabulary for a similar vocabulary that uses an 8-direction
D-pad instead of the 4-direction one. Now add four more
mechanics with the obvious effect, letting the player move
diagonally with the diagonal button presses. Now if we ask
our series of questions again, we find that the game is still
winnable, but also find that it can be won without the player
ever getting the key—not what we intended! The event-
calculus planner gives us a sequence of events for winning
without getting a key that demonstrates the problem: the
player can jump through walls diagonally, since crossing
walls that only touch at corners doesn’t require ever pass-
ing through an impassable tile. Thus a bug in the concrete
mechanics led to a bug in our abstract model of intended
gameplay. The problem here is obvious, but similar prob-
lems arise even in shipped games, where the unexpected in-
teraction of low-level mechanics results in the player being
able to get somewhere they shouldn’t be or at a time they
shouldn’t be there. Most of these bugs are caught in play-
testing, by looking through debug logs when the play-tester
manages to break the game somehow. Using the planner
here to generate a plan for exiting the level without getting
the key is in effect giving us a debug log for that particu-
lar problem on demand. Again, we found the problem only
by querying the abstract representation: If we want to check
that some bit of gameplay can never be seen out of order, we
simply ask that directly, and get a debug log with a coun-
terexample regardless of whether the problem was in the ab-
stract mechanics, the concrete mechanics, or in something
else.
A number of other changes can be made fairly easily to

this game. In particular, adding new mechanics that don’t
change existing mechanics doesn’t require modifying any
of our existing game; we just tack on the new ones. For
example, we could add a time limit, which makes the player
lose if they don’t exit within 30 timesteps. We could add an
enemy that chases the player around, and makes the player
lose if they collide. This allows for quick experimentation
with adding and removing mechanics.

Related work

Game designers and scholars have proposed abstracting and
cataloguing common game-design patterns in order to pro-
vide a set of reusable design elements and a language for
discussing them (Kreimeier 2002; Zagal et al. 2005). These
efforts have similarities to ours, but their game-design ele-
ments and patterns are specified at a fairly high level and
described in natural language, with many of the details left
out. They provide (as intended) elements that a human game
designer could combine and reuse, but they cannot literally
be combined and reused automatically, nor can we automati-
cally determine anything about what happens when different
patterns are combined.

88



The main previous work in formally specifying game me-
chanics also uses formal logic, but standard first-order logic,
and in the context of two-player board games (Pell 1992;
Love et al. 2006). These representations are more cumber-
some and difficult to modify for our purposes. Since they
have no built-in notion of events or time, everything must
be specified in terms of state-transition rules, which are less
natural for many types of games; in addition, the lack of
an inertial property for states requires explicit frame axioms
to be written out specifying what things don’t change as
time passes, making it difficult to modify a game simply by
adding new axioms, since these frame axioms must be mod-
ified at the same time. These sorts of concerns led to the
development of the event calculus in the first place, so we
adopt its approach to addressing them.
Alternatively, we could have used a procedural repre-

sentation for game mechanics as executable code, which
could be suitably recombined given good modular design
and appropriate interfaces, as some of our previous work has
done (Nelson and Mateas 2007). The main disadvantage to
this approach is that for any automated support to be built
on top of such a class library, it would need declarative in-
formation attached to the mechanics anyway. Our approach
defines the mechanics declaratively, making all the infor-
mation about the mechanic available to be reasoned about.
Future work might, however, explore including some code-
generation to generate more efficient procedural code from
the declarative representations, especially in cases where the
goal is to produce end-user-playable games rather than pro-
totypes.

Conclusions and future work
We propose that automated game-design support tools (and
fully automated game-design systems) will need a repre-
sentation that allows them to add and remove mechanics
from games, reason about the resulting game, and produce
a playable version of the game being represented. We pre-
sented an architecture using the event calculus to represent
games, with a way of organizing a game’s abstract mechan-
ics, concrete mechanics, graphical display, and user input
within that representation. We demonstrated a number of in-
cremental modifications and critiques of a game design that
can be done with such a representation.
Future work can take a number of directions. Most of

the potential applications would benefit from a large library
of game-design mechanics and common design-criticism
queries, which would also serve to stress-test this approach’s
flexibility and scalability. Other future work diverges based
on the target application.
To support expert game designers in rapid prototyping,

designers will need to be able to specify their ownmechanics
in a reasonable fashion. While the event calculus is a more
natural representation for this purpose than other formal log-
ics, it is not designed specifically for specifying game de-
signs, and so a number of aspects could be made simpler,
with the appropriate event-calculus axioms generated from
a higher-level representation in most common cases.
To support novice game designers, the requirements are

somewhat different. We expect that they would mainly use

mechanics from a built-in library of existing mechanics, so
the work will be in making it easy for them to select me-
chanics and play and critique the resulting design. Much of
this may take the form of heuristics for when to use particu-
lar mechanics, or which fixes to suggest for common game-
design problems. A fully automated game-design system
will need quite similar heuristics, but will require work on
control flow instead of on the user interface.
On the logic side, compiling event calculus to a SAT prob-

lem will not scale to many types of games. Since a boolean
variable is needed for each possible set of parameters to
a fluent, specifying the position of a sprite on a 640x480
grid would take over 300,000 variables. Doing inference in
first-order logic avoids this problem, and tools for it also ex-
ist (Shanahan 2000; Mueller and Sutcliffe 2005).

References
Hom, V., and Marks, J. 2007. Automatic design of balanced
board games. In Proc. 3rd Artificial Intelligence and Interactive
Digital Entertainment Conference (AIIDE), 25–30.
Kreimeier, B. 2002. The case for game design patterns.
Gamasutra. http://www.gamasutra.com/features/
20020313/kreimeier_01.htm.
Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Genesereth,
M. 2006. General game playing: Game description language
specification. Technical Report LG-2006-01, Stanford Logic
Group.
McCarthy, J. 1998. Elaboration tolerance. In Proc. 4th Sympo-
sium on Logical Formalizations of Commonsense Reasoning.
Miller, R., and Shanahan, M. 1999. The event calculus in classical
logic — alternative axiomatizations. Electronic Transactions on
Artificial Intelligence 3(A):77–105.
Mueller, E. T., and Sutcliffe, G. 2005. Discrete event calculus
deduction using first-order automated theorem proving. In Proc.
5th Intl. Workshop on the Implementation of Logics, 43–56.
Mueller, E. T. 2004. Event calculus reasoning through satisfiabil-
ity. Journal of Logic and Computation 14(5):703–730.
Mueller, E. T. 2006. Commonsense Reasoning. Morgan Kauf-
mann.
Nelson, M. J., and Mateas, M. 2007. Towards automated
game design. In AI*IA 2007: Artificial Intelligence and Human-
Oriented Computing. Springer. 626–637. Lecture Notes in Com-
puter Science 4733.
Nelson, M. J., and Mateas, M. 2008. An interactive game-design
assistant. In Proc. 2008 Intl. Conference on Intelligent User In-
terfaces (IUI), 90–98.
Orwant, J. 2000. EGGG: Automated programming for game
generation. IBM Systems Journal 39(3–4):782–794.
Pell, B. 1992. Metagame in symmetric, chess-like games. In
Heuristic Programming in Artificial Intelligence 3: The Third
Computer Olympiad. Ellis Horwood.
Shanahan, M. 1989. Prediction is deduction but explanation is
abduction. In Proc. 11th Intl. Joint Conference on Artificial Intel-
ligence (IJCAI), 1055–1060.
Shanahan, M. 2000. An abductive event calculus planner. The
Journal of Logic Programming 44:207–239.
Zagal, J. P.; Mateas, M.; Fernández-Vara, C.; Hochhalter, B.; and
Lichti, N. 2005. Towards an ontological language for game anal-
ysis. In Proc. 2005 Digital Games Research Association Confer-
ence (DiGRA).

89




