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Abstract

Although MIDI is often used for computer-based interactive
music applications, its real-time performance is difficult to
generally quantify because of its dependence on the charac-
teristics of the given application and the system on which it is
running. We extend existing proposals for MIDI performance
benchmarking so that they are useful in more realistic inter-
active scenarios, including those with high MIDI traffic and
heavy CPU load. Our work has resulted in a cross-platform
freely-available testing suite that requires minimal effort to
use. We use this suite to survey the interactive performance
of several commonly-used computer/MIDI setups, and extend
the typical data analysis with an in-depth discussion of the
benefits and downsides of various performance metrics.

1 Introduction
MIDI is a widely used standard for interconnecting elec-

tronic music devices, and includes both a communications
protocol and a physical layer. It was originally designed to
provide low-latency transmission of musical messages be-
tween devices, although arguments questioning its appropri-
ateness in highly interactive real-time settings have been made
(Wessel and Wright 2000; Moore 1988). Quantifying MIDI’s
latency is crucial because even very small timing variations
can be musically perceptible, especially when grace notes or
other short ornaments are present. Researchers have proposed
values as low as 1 to 1.5 milliseconds as an acceptable range
of latency variation (Moore 1988; Wessel and Wright 2000),
and around 10 milliseconds as an acceptable upper bound on
absolute latency (Wessel and Wright 2000; Brandt and Dan-
nenberg 1998).

Given MIDI’s fixed 31.25 kHz baud rate, when connect-
ing stand-alone synthesizers and sending messages of fixed
size, associated communication delays are trivial to calculate,
consistent, and relatively small. Our concern in this paper is
with latencies that arise when MIDI communicates with soft-
ware running on a general-purpose computer. Toward this
end, we use system to refer to a general-purpose computer
and all of its relevant interconnected parts: the MIDI inter-
face and its related drivers; the physical bus to which the in-
terface is connected (USB, PCI, etc.); the operating system

(including its scheduler, its MIDI API, and so on); and a spe-
cific run-time configuration (system priorities, power options,
etc.). These system parts may all introduce additional latency,
typically greater than the latencies associated with MIDI’s
physical layer, and almost always less consistent. Nonethe-
less, MIDI’s low cost and ready availability make it a fre-
quent choice of researchers building interactive music sys-
tems (Biles 1998; Franklin 2001; Dannenberg et al. 2003).

Quantifying a system’s latency is heavily dependent on
the particular application. For example, as music researchers
increasingly rely on more computationally expensive artifi-
cial intelligence techniques to proceduralize “musically rea-
sonable” behavior, it becomes increasingly important to un-
derstand how processor load impacts latency. The amount
of MIDI traffic is also likely to impact performance. For in-
stance, an application’s ability to accurately time-stamp in-
coming MIDI data could very well degrade when it is simul-
taneously sending out a steady stream of chordal accompani-
ment (our empirical data indicates that this is in fact a prob-
lem).

Our interest in quantifying system performance in such
realistic settings was sparked by our desire to develop a rhythm
quantizer that could transform short segments of performed
notes into “appropriate” rhythmic notation in real time. One
thing that sets our task apart is that we want to develop a tech-
nology that can customize its mapping so as to “best notate”
the rhythms in a musician-specific way. Recent advances in
probabilistic modeling provide fertile ground for such user
customization (Cemgil and Kappen 2001, 2003), but the iter-
ative and approximate nature of these methods leads to their
loading the processor as heavily as possible. Probabilistic
models also provide disciplined ways for reasoning about un-
certainty, and it was in thinking about this that we realized it
was not at all clear what “error bars” we should use to model
the accuracy of the time stamps that the computer assigns to
incoming MIDI data during a live performance. It was at this
point that we took a step back and became interested in real-
time MIDI performance testing.

Clearly, benchmarks for quantifying latency in realistic
interactive music situations would be enormously valuable.
Unfortunately, MIDI performance in realistic systems is typ-
ically poorly documented, and when it is empirically mea-
sured, the environment in which it is tested is often quite re-
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stricted. For example, Wright and Brandt (2001, 1999) pro-
vide a method for measuring a system’s latency that is no-
tably independent, by which we mean that quantification de-
pends on an independent piece of hardware (as opposed to
the system-under-test’s clock). These tests, however, were
performed using single active sense messages, no processor
load, and with proprietary software generating the response.1

A more complete (albeit dated) analysis of latency in off-the-
shelf operating systems under various loads and configura-
tions was done by Brandt and Dannenberg (Brandt and Dan-
nenberg 1998), but their measurements rely on the system-
under-test’s notion of time. To address these deficiencies,
we have developed a freely-available cross-platform software
package that, when used in conjunction with the inexpensive
and easy-to-build MIDI-Wave transcoder circuit proposed by
Wright and Brandt, can be used to independently test the per-
formance of a particular system in-place. The software and
accompanying documentation can be found online.2

The work presented here is important in part because a
myriad of factors can influence real-time system performance.
Thus it becomes desirable, and in some cases essential, for
researchers—particularly those developing interactive MIDI
applications—to be able to quantify performance for their
particular application and system. To increase the odds that
our test package will be applicable to the general public, we
significantly extended upon the methodologies used by Brandt,
Dannenberg, and Wright. For example, in addition to ac-
tive sense data, we developed more realistic burst and load
tests. Burst tests are interesting because multiple MIDI note
messages are periodically transmitted in groups, producing
the type of situation that arises when there is real-time back-
ground accompaniment. Load tests do the same thing under
extensive CPU load, a likely scenario when generating inter-
active accompaniment on-the-fly. Because our test platform
is also based on PortMidi, a free, light-weight, cross-platform
MIDI library,3 users who run our tests can easily migrate from
testing to writing their own PortMidi-based applications.

We have used the methodology we describe to conduct
a survey and analysis of the performance of several popular
MIDI interfaces on the three major consumer operating sys-
tems (Linux, Mac OS X, and Windows). While these tests
are certainly not exhaustive, we believe they aptly illustrate
the many issues involved in quantifying and analyzing real-
time performance (as well as serving as useful points of refer-
ence in their own right). A brief overview of the performance
results themselves has already been published (Nelson and
Thom 2004). Our purpose in the present paper is to extend
this initial overview by provide a detailed discussion of the
benefits and pitfalls of various testing methodologies, analy-
sis techniques, and statistical measures. The hope is that this
discussion will foster wider community participation in the

1Details from Jim Wright, in personal communication.
2 http://www.cs.hmc.edu/∼bthom/downloads/midi/
3http://www.cs.cmu.edu/∼music/portmusic/

Figure 1: Overview of the system test setup.

development of performance testing metrics. We further hope
our software package and such discussion will help lead to the
replacement of ad hoc performance guesses and tweaks with
easy and commonplace benchmarking which system-builders
may use to rigorously quantify and tune their systems’ perfor-
mance.

2 Methodology
Our empirical testing extends the MIDI-Wave transcoder

methodology proposed by Wright and Brandt (2001, 1999) by
adding many more types of tests and real-time data analysis.
A schematic overview of the test setup is shown in Figure 1.

2.1 The Midi-Wave Method
Each test involves two systems. The “reference” (REF)

system externally generates a reference stream of MIDI mes-
sages to send to the system whose performance is being tested
(TEST). The TEST system, running a simple PortMidi ap-
plication, sends them back out as the TEST stream. The
transcoder sits between the two systems, transcoding a copy
of each of the REF and TEST streams into audio signals
and sending each to a different channel of the REF system’s
soundcard line-in. Latency is measured by our analysis soft-
ware, which runs on the REF system and compares the delay
between the two audio streams in real time.

The audio is a raw MIDI signal converted into the right
voltage range for audio. This allows us to use the soundcard
as a cheap and readily-available two-channel voltage sam-
pler. When recorded, the audio sounds a bit like a buzzing
fly. Some sample audio is shown in Figure 2.

As Wright and Brandt observe, recording the 31.25 kHz
MIDI signal at the standard 44.1 kHz audio sampling rate suf-
fices. Although digitally sampling the MIDI signal at this rate
does introduce distortion, it is of little consequence to us—we
are merely interested in locating the positions of MIDI mes-
sages. The 31.25 kHz MIDI data rate means each bit in a
MIDI message will remain on for approximately 31 µs; since
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Figure 2: Sample transcoder-produced audio (from a G4 OSX
2x2 burst test).

sampling at a 44.1 kHz sampling rate means sampling ap-
proximately every 23 µs, each MIDI bit will be reflected in at
least a one-sample spike, so none will be missed. As detailed
elsewhere (Wright and Brandt 1999), latency measurements
accurate to within 0.1 to 0.2 ms are easily obtained.

2.2 Modifications and Proposed Benchmarks
The original Midi-Wave tests performed MIDI-thru on the

TEST system using the proprietary Cubase sequencing soft-
ware (whose MIDI-thru facility runs at a low system level).4

We were more interested in testing under conditions similar
to those an application-level software might encounter. To do
so, we instead wrote a light-weight PortMidi application that
simply checks for MIDI input from the REF stream once per
millisecond and forwards it on to the TEST stream.

We have significantly extended the sorts of tests that can
be run. Wright and Brandt’s original tests used single short,
one-byte active sensing messages at fixed intervals. Though
active sense messages provide a good baseline for system per-
formance, especially since they are not typically treated in
special ways by drivers or operating systems, it is more realis-
tic patterns of MIDI traffic that we’re interested in. Therefore,
we retained the ability to run active sense tests, but added a
number of other ways for users of our benchmarking software
to vary MIDI traffic patterns. For example, note-on and note-
off messages can be used; messages may be sent either indi-
vidually or in bursts of varying size; and messages or bursts of
messages may be output at user-specified frequencies. There
is also an option to run the test under simulated load (arbi-
trary arithmetic on a 1-megabyte matrix), producing approx-
imately 100% CPU utilization and memory usage sufficient
for clearing the CPU cache.

4This and many details in this section from Jim Wright, in personal com-
munication.

From the possible combinations of these options, we chose
three tests as benchmarks:

• sense: one active sensing message every 35 ms.
• burst: bursts of ten note-on or note-off messages (alter-

nating) every 100 ms.
• load burst: same as burst, but with load on the TEST

system.

We ran each test for an hour, a duration arrived at through
some empirical testing. Short (e.g. 15-second) tests can char-
acterize average performance reasonably well, so are useful
as a quick indication, but performance problems on some sys-
tems show up only occasionally. For example, in some of our
tests worst-case performance over an hour was 5–7 ms worse
than worst-case performance over 15 seconds. Although even
longer tests may indicate still more rare instances of perfor-
mance degradation, we did not see such degredation in the
10-hour test we ran.

2.3 Real-Time Analysis
An key feature of our test suite is its real-time analysis.

Without real-time analysis, an hour-long test would require
recording and analyzing 600 MB of audio data. For those
users whose interest in highly reliable determination of worst-
case latency makes tests on the order of 10 hours desirable,
the prospect of recording and analyzing 6 GB of data is even
less appealing!

Our real-time analysis uses a relatively simple threshold-
ing algorithm to locate message “groups”—either single ac-
tive sense messages or bursts of multiple messages—in each
stream. Groups in the REF stream are matched up with their
corresponding groups in the TEST stream and corresponding
groups are compared to calculate latency and width.

Our thresholding method requires that message groups
be well-separated. In particular, the frequency with which
groups are sent must be low enough so that the end of one
does not get too close to the beginning of another. (Other-
wise, it is difficult to determine where one ends and another
begins.) Wright and Brandt must have used a more complex
signal analysis scheme (perhaps autocorrelating over the en-
tire stream), for they analyzed audio data collected for active
sensing messages sent every 4 ms, yet we have seen maxi-
mum latencies on the order of 25 ms. For this reason, our
sense tests use a 35 ms period. Although our simple threshold
scheme is more restrictive, it allows for tests of arbitrary du-
ration, which we feel is a reasonable tradeoff. Another benefit
of our algorithm is that analysis errors are unlikely to occur.
Our software requires that each REF and TEST group match,
and that no detected latency be larger than the period sepa-
rating groups, so an error in detecting a threshold will almost
certainly produce a failed test as opposed to faulty data.

The real-time audio analysis is implemented using the
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cross-platform PortAudio toolkit5 and is integrated with the
REF stream generation, which is done using PortMidi.

2.4 System Configurations Tested
As listed below, we tested a selection of systems made up

from commonly-used components. For brevity, we will use
the italicized abbreviations when reporting results for partic-
ular systems.

Interfaces:

• Midiman MidiSport (2x2), USB
• MOTU Fastlane (Motu), USB
• EgoSys Miditerminal 4140 (4140), parallel port
• Creative Labs SoundBlaster Live! 5.1 (SB or SBLive), PCI

soundcard with integrated MPU-401 compatible interface

Operating systems (and their MIDI APIs):

• Linux with 2.4-series kernel (Linux 2.4) using the Debian
GNU/Linux distribution with ALSA 0.9.4, kernel 2.4.20, and
some low-latency patches.6

• Linux with 2.6-series kernel (Linux 2.6), as above but with
ALSA 0.9.7, kernel 2.6.0, and no special patches.

• Mac OS X (OSX) 10.3.2 (Panther) with CoreMIDI.
• Windows 2000 (Win2k) SP4 with WinMME.
• Windows XP (WinXP) SP1 with WinMME.

Computers:

• HP Pavilion 751n desktop (HP) with 1.8 GHz Intel Pentium
4 processor and 256 MB RAM.

• Apple Mac G4 desktop (G4) with dual 500 MHz G4 proces-
sors and 320 MB RAM.

• IBM Thinkpad T23 laptop (T23) with 1.2 GHz Intel Pen-
tium II processor and 512 MB RAM.

A few notes on configuration: We made an effort to ensure
that the systems were configured reasonably, but given the
range of possible configurations, there is likely still room for
improvement. Under Windows, MIDI was handled by a mul-
timedia thread, with system priorities set as recommended on
the PortAudio website: “under the System Properties, Perfor-
mance Options menu, select ‘optimize performance for back-
ground services.”’ Under Linux, the MIDI-handling thread
ran with nice value -19.7 Under OS X, the MIDI-handling
thread ran as a fixed-priority (non-time-sharing) thread with
precedence 30. Under all operating systems, the load thread
(in tests that included load) ran as a standard thread with de-
fault priorities. We also took other reasonable steps to en-
hance performance, turning off virus scanners, disabling net-
work access, disabling power saving features (hard drive spin
down, screen-savers), and so on.

5PortAudio (Bencina and Burk 2001) performs a similar function
for audio a PortMidi does for MIDI, and is freely available from
http://www.portaudio.com.

6Robert M. Love’s variable-Hz (Hz=1000) and pre-emptible kernel
patches and Andrew Morton’s low-latency patch.

7The software must be run as root for this heightened priority.

Previous tests (Wright and Brandt 2001) have suggested
that USB interfaces, which are newer but quickly becoming
the de facto standard, perform more poorly than “legacy”
interfaces (parallel or serial port, PCI), so we have tested
both types of interfaces. We did not test the newest inter-
face class—FireWire—as the steep prices of these interfaces
(over US$500 as of this writing) make them less ubiquitous.

Not all interfaces could be tested on all operating sys-
tems. OSX’s CoreMIDI only supports the USB interfaces,
so we did not test the 4140 and SBLive there. Similarly, no
Linux drivers are available for the 4140. We made numer-
ous attempts to get the Motu to work under Linux but were
never successful. Additionally, the early revisions of Linux
2.6 available at the time of testing display USB problems on
some hardware. For this reason, the 2x2 was only tested on
Linux 2.4. For the OSX and Windows tests, we used the
newest drivers available as of November 2003 on their man-
ufacturers’ websites. Since none of the manufacturers pro-
vide Linux drivers, we used reverse-engineered open-source
drivers for these tests.8 Finally, under OSX the Motu refused
to forward active sense messages, so note-on and off mes-
sages were used in that case.

3 Terminology and Statistics
In prior work, system-induced MIDI latency has typically

been characterized by latency and jitter, where latency is the
delay introduced by a system when transmitting a MIDI mes-
sage and jitter is how much this delay varies over time. For
example, Figure 2 shows data for two bursts of MIDI (bursts
i and i + 1). REF burst start times are ri and ri+1; corre-
sponding TEST times are ti and ti+1. Two latency measure-
ments can be calculated from this data: Li = ti − ri and
Li+1 = ti+1 − ri+1. A latency measurement is obtained
for each such message group, and recorded in the Transcoder
Latency histogram (see Figure 4 for an example).

It is easy to ambiguously use latency and jitter terminol-
ogy because both intimately depend on this histogram of de-
lays. For instance, although each count in the histogram is
a specific event’s latency, often latency is used in the context
of an aggregate value: average latency (Wright and Brandt
2001), worst-case latency (Brandt and Dannenberg 1998), and
so on. Fortunately, everyone seems to agree that the distribu-
tion that describes a system’s delay is the primary quantity of
interest, and at some point in a discussion on real-time perfor-
mance, jitter usually ends up being used synonymously with
this distribution.

Using a different definition of latency, Brandt and Dan-
nenberg (1998) collected “latency” measurements by calcu-
lating the difference between the actual time that separated
adjacent timer callbacks and the constant period at which

8The emu10k1 ALSA driver for the SBLive, and the usb-midi driver
for the 2x2.
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the timer was supposed to run. Because there was no ex-
ternal source in this case, “delay” was assumed to be zero,
the assumption being that the callback itself executed very
quickly (within a few microseconds). In this scheme, varia-
tion in system performance is thus the sole measurement be-
ing considered. Transcoder data not only provides latency
data (Li), an absolute standard against which to measure de-
lay, but period-based measurements as well; in particular REF
period Ri = ri+1 − ri and TEST period Ti = ti+1 − ti.

Both the transcoder’s worst-case and average absolute la-
tency estimates are useful when quantifying how responsive a
system is. Period-based quantities also have merit, especially
when the goal is to maintain as constant a stream of periodic
inter-onset intervals as possible. For this reason, we also col-
lect a Transcoder δ Latency histogram (see Figure 4), which
records differences in adjacent latencies: δLi = Li+1 − Li.
Observe that, depending on how delay is correlated over time,
the distribution over δLi might look less disperse than the one
over Li.

From Figure 2 it is clear9 that:

Li + Ti = Ri + Li+1. (1)

If the distribution of Li were normal, with standard devia-
tion σ, then the the uncertainty in δLi would increase10 to√
2 · σ. In this case, we would expect more variation in the

differences between adjacent latencies, which makes sense
given that the addition of two random identically distributed
variables only increases uncertainty. As already pointed out,
however, if delays have temporal dependence, it is possible
for the distribution of δLi to be less spread out than the one
for Li.

Combining the definition of δLi with equation 1 demon-
strates its importance:

Ti = Ri − δLi. (2)

Therefore, in applications where we are most interested in
accurately responding to a signal’s inter-onset content, the
Transcoder δ Latency histogram better quantifies how much
variation a system will produce. As a more pessimistic upper-
bound, peak jitter—the difference between the maximum and
minimum latency values—quantifies the maximum possible
distortion in the interval between any pair of events (not only
adjacent events). When quickly responding to onsets them-
selves, the Transcoder Latency histogram is the primary met-
ric of interest, and a worst-case upper-bound is provided by
the maximum latency value.

To quantify bursty real-time behavior, we record the widths
of the audio transcoded for a burst of messages. Width, as
shown in Figure 2, is the time between the beginning and
end of a burst message. A distribution over width quantifies

9The widths of Li and Li+1 are very close together so this may be diffi-
cult to see; a zoom on this figure would reveal that ri < ti and ri+1 < ti+1.

10Propagating error by adding in quadrature.

Figure 3: A REF burst (top) is “stretched” as the TEST sys-
tem is unable to keep up with the continuous burst of data
(bottom).

a TEST system’s capability to receive and process bursts of
MIDI messages in a timely manner. Figure 3 provides an ex-
ample of how a bursty message can be “stretched” because
of the test system’s (bottom audio signal) inability to keep up
with sending out the signal as it comes in. A thresholding
scheme that handles most such cases is used to detect width,
though as mentioned in Section 2.3 this relies on the bursts
being well-separated.11

4 Results
A single test run produces a set of histograms like those

shown in Figure 4. We chose to focus on this 4140 config-
uration because its poor performance makes for interesting
discussion. Together, the Transcoder Latency and Test Width
histograms provide a reasonable characterization of a sys-
tem’s performance and the Transcoder δ Latency histogram
summarizes some aspects of temporal dependence. Notice
the much smaller values in the δ Latency histogram, indicat-
ing a high degree of temporal dependence (in fact, while there
are many absolute latencies around 20 ms, only two δ laten-
cies are above the 4 ms range).

The TEST Periodic Timer histogram displays data col-
lected by the TEST system entirely in software. This his-
togram displays how much variability the TEST system wit-
nessed in its periodic scheduling of the 1-ms timer which ser-
vices MIDI-thru. Rather than being measured by an indepen-
dent device, this histogram’s data was measured solely with
respect to the TEST system’s internal clock.

It makes perfect sense that the periodic timer and transcoder
histograms correlate somewhat, for obvious possible sources
of MIDI latency include an operating system’s ability to sched-
ule things on time in the face of numerous competing re-
quests. Having said this, one might conclude that a purely
software-based approach to performance testing would suf-
fice; indeed, at least one previous performance analysis re-
lied on this method (Brandt and Dannenberg 1998). How-
ever, as Figure 4 illustrates, the software histogram provides a
much less accurate indication of the latency distribution than
is available with the transcoder. For this reason, we recom-

11To help debug in cases where they are not, the software dumps an audio
file containing data recorded over the past few groups, illustrating errors like
the one in Figure 3.
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Figure 4: A sample selection of histograms (load burst on T23, Win2k, 4140), except for the lower-right-hand figure, which
displays data taken from a load burst test on G4, OSX, Motu (see text for details).

mend spending the extra effort needed to build the transcoder.
It is worth drawing attention to the difference in variabil-

ity between the TEST and REF width histograms. The REF
system (Linux 2.4, HP, SBLive) was only producing periodic
bursts of output, and it was able to realize this behavior very
consistently. The TEST system, which had to not only pro-
cess asynchronous MIDI input but also send it back out, had
a much more difficult time. We saw this kind of behavior
on virtually every system, which suggests that MIDI input is
inherently more difficult to process in real-time. For this rea-
son, we recommend that bi-directional communication be a
primary focus when measuring real-time performance.

Various summary statistics that quantify the results of our
performance survey are shown in Table 1. For brevity, only
best-case (sense) and worst-case (load burst) tests are reported
here. For unloaded burst test results, see our NIME publica-
tion (Nelson and Thom 2004). Although the summary statis-
tics in this table are useful, they do obscure valuable informa-
tion about the underlying distributions. For example, since
the Transcoder Latency histogram in Figure 4 is clearly bi-
modal, commonly used Gaussian mean and standard devia-
tion parameters do not adequately characterize this distribu-
tion.

Histograms are not perfect either: Though they retain in-
formation about the distribution of latencies, they throw away
information about how these latencies might vary over time.
Some of this variation is captured by the Transcoder δ La-
tency histogram, but this too only takes into account adjacent
latencies, so does not capture many sorts of periodic behav-

ior. The lower-right-hand plot of Figure 4 sheds additional
light on temporal dependence by showing where problem-
atic latencies occur in time. In this graph, each data point
corresponds to a time (x axis) where the system had a la-
tency greater than or equal to 7 ms. The y axis is merely
the distance on the x axis between the current data point and
its predecessor. In other words, data that lies close to the x
axis corresponds to bursts of nearby high latencies. We have
seen case where, when a system gets behind, it starts “playing
catch-up”, accelerating its output of delayed events, which
would explain the data-points near the x axis. Interestingly,
many other problems are separated by approximately 3-5 sec-
onds. In our cursory attempts to look more carefully at how
latencies are distributed over time, we have come to realize
that it would be very difficult to predict when exactly prob-
lems are likely to occur. Loosely speaking, however, the data
displays some systematic temporal trends. Temporal trends,
even though hard to predict, are definitely present. Temporal
dependence is substantiated by Table 1; notice that the δ la-
tencies tend to be smaller than the absolute latencies. Further
substantition is found in the fact that the standard deviation of
the δ latencies, σδL, as opposed to being

√
2 · σL, is instead

significantly less than σL. The deeper performance-related
temporal issues certainly warrant further investigation. It has
been our experience that simple modifications to our tools
support fairly open-ended exploration in this area.

The good news for interactive MIDI applications is that
the best-performing systems in our tests exhibit performance
very close to the targets of 10-ms latency and 1- to 1.5-ms
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System Sense Load Burst
msec msec

µL σL pL mL µδL σδL mδL µL σL pL mL µδL σδL mδL pw mw

HP Linux2.6 SBLive 0.8 0.3 2.1 2.3 0.0 0.1 1.4 1.2 0.3 7.0 7.6 0.0 0.1 6.6 2.4 8.6
HP Linux SBLive 0.8 0.4 25.4 25.6 0.0 0.1 24.7 1.2 0.4 26.0 26.6 0.0 0.1 25.9 17.7 23.9
HP Linux 2x2 2.2 0.5 24.7 25.7 0.0 0.2 24.0 3.7 0.5 34.4 36.4 0.0 0.2 32.8 21.6 29.0
G4 OSX 2x2 3.5 0.4 2.2 4.6 0.5 0.1 1.7 3.6 0.4 3.2 5.8 0.4 0.3 2.2 8.7 18.1
G4 OSX Motu 5.4 0.6 3.4 7.0 0.4 0.5 3.0 5.7 0.7 5.6 9.2 0.3 0.5 3.0 7.2 10.6
HP WinXP SBLive 0.9 0.3 2.0 2.4 0.1 0.2 1.3 1.3 0.3 2.0 2.8 0.6 0.2 1.7 1.2 10.6
HP WinXP 2x2 3.5 0.5 3.2 5.4 0.3 0.4 2.2 5.8 0.6 5.4 7.8 0.9 0.5 3.6 3.9 12.5
HP WinXP Motu 7.5 1.5 8.0 12.2 1.8 1.4 3.2 7.9 1.5 8.0 12.6 1.0 1.2 4.0 6.8 13.2
T23 Win2k 2x2 4.3 0.6 3.9 6.3 0.1 0.4 2.1 6.8 0.5 7.8 10.6 0.1 0.4 4.0 4.2 13.6
T23 Win2k Motu 7.7 1.3 5.1 10.3 1.0 0.5 2.2 7.7 1.2 5.0 10.6 0.1 0.3 4.9 8.4 14.8
T23 Win2k 4140 2.1 0.8 3.6 4.4 0.5 0.8 3.3 3.7 0.3 18.3 20.7 0.3 0.2 16.6 5.7 19.5

Table 1: Summary statistics derived from histograms. The Transcoder Latency histograms are characterized by mean (µL),
standard deviation (σL), peak jitter (pL) and maximum (mL). The Transcoder δ Latency histograms are characterized by the
same set of statistics, except that peak jitter is omitted, since the minimum δL is zero in all cases, so peak jitter of δL is the
same as its maximum. For the load burst tests, width is characterized by peak jitter (pw) and maximum width (mw).

jitter that were discussed in the introduction. The best over-
all performer in our particular setup—the SBLive on the HP
desktop running WinXP—has in its worst-case results (the
load burst test) a maximum latency of 2.8 ms, peak jitter of
2.0 ms, and peak jitter in the burst widths of 1.2 ms, all very
respectable figures.

The bad news is that none of the other configurations we
tested exhibited performance at quite this level, at least when
running the load burst tests. A common problem, exhibited
by the otherwise admirably-performing 2x2 on the G4 run-
ning OSX, is fairly large width jitter in the load burst tests.
Unfortunately, although single notes have low latency and jit-
ter, the notes towards the end of a burst have significantly
higher jitter. Perceptually the impact of this behavior might
lead to chords that sound slightly arpeggiated. The worst
victim of system load is the 4140, which, while it outper-
forms the USB interfaces on a lightly-loaded system,12 de-
grades very badly when tested under load, possibly a result
of the way the low-level parallel port’s hardware interrupts
interact with the operating system. In the sense tests, on the
other hand—where messages are kept relatively sparse with-
out large bursts and there is minimal system load—about half
the interfaces perform reasonably well, with peak jitter under
4 ms.

One pleasant result is that the performance of Linux 2.6
is vastly improved over that of Linux 2.4, especially in terms
of maximum latency and peak jitter. Linux’s performance for
real-time tasks had previously been rather poor; the substan-
tial effort made by the kernel developers in addressing that
criticism has obviously been successful. For our purposes,
the new version of Linux is an ideal option, since it nicely
complements the open-source model of PortMidi/PortAudio,

12Including in the unloaded burst tests not reported here.

and we can tolerate a 7-ms jitter. Similarly, those who can
accept jitter in the 5- to 7-ms range can consider using the
USB interfaces on OSX. This will be particularly useful if
the G4 laptops perform similarly to the desktops (we’re opti-
mistic, given the similarity of the hardware). Unfortunately,
we have not found a good solution for PC laptops, which do
not support PCI soundcards like the SBLive. We had origi-
nally purchased the 4140 in the hopes that a low-level parallel
port interface would perform better than the USB alternative,
but its poor performance under load makes it impractical. We
emphasize this particular example because it powerfully illus-
trates the need to replace ad hoc guesses about performance
with a rigorous set of tests.

5 Future Work
Further modifications to our testing tools are worth ex-

ploring in order to simplify their use and increase the range
of situations they can test. In particular, the constraint men-
tioned in Section 2.3—that message groups be well-separated—
would be nice to do away with. It has been suggested to us13

that integrating a UART into the transcoder might allow us
to convert each MIDI byte into a well-separated single spike.
An extension like this would allow us to test periodic MIDI
traffic at higher frequencies.

Also worth exploring are the “scheduled output” MIDI
APIs found on many operating systems (e.g. the WinMME
stream interface, which PortMidi supports). This technology
allows a MIDI message to be scheduled for output at some
point in the future, instead of being sent out immediately. If
messages were scheduled to be output in, say, 1 to 5 ms, this

13Roger Dannenberg, personal communication.
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might pass off high-priority scheduling into the operating sys-
tem kernel, where it may be more likely to be serviced consis-
tently. If implemented well, this might trade off an increase
in latency for a decrease in jitter, which would be desirable in
some applications.

6 Conclusion
Although it turns out that MIDI can indeed perform close

to the threshold of perceptible timing error, it is clear that
performance can differ significantly, both due to the configu-
ration of the system and due to the nature of the MIDI traffic.
Furthermore, it is not at all obvious how to best quantify per-
formance generally, given the different constraints present in
different contexts. Previous performance testing did not bring
all of these facts to light. We hope that our discussion and
analysis will, in addition to illustrating some common sources
of latency and jitter, encourage researchers using MIDI for in-
teractive computer applications to use independent, in-place
tools to test and tune the performance of their systems.

One of our hopes in developing this more realistic MIDI
test suite is that it will foster active community participation.
Certainly we are not the only ones who share this interest—
existing resources such as Jim Wright’s OpenMuse14 have
similar goals. Imagine, for example, the benefits of a resource
where individual researchers could report and discuss empiri-
cal performance measures for their particular applications on
specific systems. Such interaction would likely lead to a ro-
bust and generally accepted set of useful benchmarks for in-
teractive music applications, as well as an extensive survey
of system performance. This would be tremendously use-
ful to those designing their own interactive music systems,
as currently it is not at all clear which interfaces, operating
systems, and configurations one ought to choose for various
applications. In addition, it would provide a rigorous basis
from which to evaluate the relative merits of various proto-
cols that have been proposed as replacements for traditional
MIDI, such as Ethernet MIDI and Open Sound Control.
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