
 
Evaluating the Authorial Leverage of Drama Management  

 
Sherol Chen,1 Mark J. Nelson,1,2 Michael Mateas1 

 1 Expressive Intelligence Studio  
University of California, Santa Cruz 
{sherol, michaelm}@soe.ucsc.edu 

2 School of Interactive Computing  
Georgia Institute of Technology 

mnelson@cc.gatech.edu 
 
 

Abstract 
A drama manager (DM) monitors an interactive experience, 
such as a computer game, and intervenes to shape the global 
experience so that it satisfies the author’s expressive goals 
without decreasing a player’s interactive agency. Most re-
search on drama management has proposed AI architectures 
and provided abstract evaluations of their effectiveness; a 
smaller body of work has also evaluated the effect of drama 
management on player experience. Little attention has been 
paid, however, to evaluating the authorial leverage provided 
by a drama-management architecture: determining, for a 
given architecture, the additional non-linear story complex-
ity a drama manager affords over traditional scripting meth-
ods. In this paper, we propose three criteria for evaluating 
the authorial leverage of a DM: 1) the script-and-trigger 
complexity of the DM story policy; 2) the degree of policy 
change given changes to story elements; and 3) the average 
story branching factor for DM policies versus script-and-
trigger policies for stories of equivalent quality. We apply 
these criteria to declarative optimization-based drama man-
agement (DODM) by using decision tree learning to capture 
equivalent trigger logic, and show that DODM does in fact 
provide authorial leverage. 

Introduction  

Technology can expand the possibilities of narrative both 
for those who experience and those who tell stories, in par-
ticular by making narrative be interactive. Authoring inter-
active narratives, however, has proven quite challenging in 
practice. Narrative in games, although sharing some quali-
ties with non-interactive storytelling, delivers a highly in-
teractive experience, which requires new ways of ap-
proaching authoring. Traditional approaches to authoring 
interactive stories in games involve a scripted and heavily 
linear process, and extending this process to large stories 
with complicated interactivity is difficult. Drama managers 
provide an alternative approach, by allowing the author to 
assume a system that knows something at run-time about 
how to manage the story. Such approaches, however, are 
difficult to evaluate from the perspective of authors look-
ing for reasons to use a drama manager rather than tradi-
tional authoring approaches. 
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 Authorial leverage is the power a tool gives an author to 
define a quality interactive experience in line with their 
goals, relative to the tool’s authorial complexity.  It has 
been pointed out that the “burden of authoring high quality 
dramatic experiences should not be increased because of 
the use of a drama manager” [Roberts & Isbell, 2008], but 
determining whether that is the case depends on determin-
ing both the complexity of an authoring approach and the 
gains it provides. 
 Previous work has studied how experience quality can 
be improved by DODM [Weyhrauch, 1997]. This does not 
directly imply that DODM provides an authorial benefit, 
however. To do that, there needs to be some reason to be-
lieve that traditional authoring methods could not have 
achieved the same results, or that they would have required 
considerably more effort to do so. 
 A way to get at that comparison is to look at the set of 
traditional trigger-logic rules that would be equivalent to 
what a drama manager is doing. We propose three criteria 
for evaluating the authorial leverage of drama managers in 
this manner: equivalent script-and-trigger complexity of 
their policies, policy change complexity, and average 
branching factor of their policies. We present preliminary 
work applying these metrics to declarative optimization-
based drama management (DODM), by examining the 
equivalent trigger-logic for a drama-manager policy as 
captured by a decision-tree learner. 

Drama Management 
In this work, we focus on DODM, an approach to drama 
management based on plot points, DM actions, and an 
evaluation function [Weyhrauch, 1997]. 
 Plot points are important events that can occur in an ex-
perience. Different sequences of plot points define differ-
ent player trajectories through games or story worlds. Ex-
amples of plot points include a player gaining story infor-
mation or acquiring an important object. The plot points 
are annotated with ordering constraints that capture the 
physical limitations of the world, such as events in a 
locked room not being possible until the player gets the 
key. Plot points are also annotated with information such 
as the plot point’s location or the subplot/quest it is part of. 
 The evaluation function, given a total sequence of plot 
points that occurred in the world, returns a “goodness” 
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measure for that sequence. This evaluation is a specific, 
author-specified function that captures story or experience 
goodness for a specific world. While an author can create 
custom story features, the DODM framework provides a 
set of additive features that are commonly useful in defin-
ing evaluation functions [e.g. Weyhrauch, 1997; Nelson & 
Mateas, 2005]. 
 DM actions are actions the DM can take to intervene in 
the unfolding experience. Actions can cause specific plot 
points to happen, provide hints that make it more likely a 
plot point will happen, deny a plot point so it cannot hap-
pen, or un-deny a previously denied plot point.  
 When DODM is connected to a concrete game world, 
the world informs the DM when the player has caused a 
plot point to happen. The DM then decides whether to take 
any actions, and tells the world to carry out that action.  
 Given this model, the DM’s job is to choose actions (or 
no action at all) after the occurrence of every plot point so 
as to maximize the future goodness of the complete story. 
This optimization is performed using game-tree search in 
the space of plot points and DM actions, using expectimax 
to backup story evaluations from complete sequences. 

Related Work 
Most related work on drama management is in proposing 
AI architectures with abstract evaluations of their effec-
tiveness.  A few projects have also been evaluated through 
user tests and simulations: U-Director [Mott & Lester, 
2006], PaSSAGE [Thue, et al. 2007], Anchorhead [Nelson 
& Mateas. 2005], and EMPath [Sullivan, Chen, & Mateas, 
2008]. U-Director was evaluated for run-time performance 
as well quality of the experience with simulated users. The 
PaSSAGE project was evaluated by 90 players to evaluate 
the impact of its drama management model on player ex-
perience. Anchorhead, the first storyworld using DODM 
created since Weyhrauch’s dissertation, evaluated DODM 
using simulated players. EMPath, the first fully-playable 
real-time game built using DODM was evaluated using 
both simulated and real players, to verify that DODM can 
indeed improve the quality of the player experience over 
the un-drama-managed case. Note that all these evaluation 
approaches focus on player experience, not on the authora-
bility of the drama management approaches. In this paper 
we propose criteria for evaluating authorial leverage, and 
apply this criteria to DODM.  

Measuring Authorial Leverage 
The evaluation of DODM thus far has shown that it can 
improve the quality of the experience using simulated 
players [Weyhrauch, 1997; Nelson et al, 2006; Nelson & 
Mateas, 2008] and real players [Sullivan, Chen, & Mateas, 
2008], and has established that the evaluation function can 
correspond with expert evaluations of experience quality 
[Weyhrauch, 1997]. None of this establishes the usefulness 
of DODM for authors, however, if similarly impressive 

results could have been achieved just as easily using tradi-
tional trigger-logic authoring techniques.   

Script-and-trigger authoring and DM equivalents 
Traditionally, interactive story experiences are authored 
with sets of scripts and triggers: the author specifies par-
ticular events or world states that trigger scripts, which 
then perform some sequence of actions in response. This 
typically involves keeping track of various state flags such 
as which items a player possesses, which NPCs they have 
talked to, etc., and conditionally triggering actions based 
on these state flags.  
 One way to understand the operations of a DM is to gen-
erate script-and-trigger logic that encodes a policy equiva-
lent to the DM’s. We do that by generating a large set of 
traces of the DM operating on a number of different sto-
ries, and then using a decision-tree learner to summarize 
the DM’s operation. The internal nodes in the learned deci-
sion tree, which split on state values, correspond to the 
tests that exist in triggers; the leaves, which are DM 
moves, then correspond to scripts to execute. A particular 
path from the root node to a leaf defines a script to execute 
given the conjunction of the set of triggers along the path. 

Evaluating DM via equivalents 
We propose looking at the equivalent trigger-logic formu-
lations of DODM policies to establish the authorial lever-
age of DODM from three perspectives. 
 Complexity of script-and-trigger equivalents. First, if 
the script-and-trigger equivalent of a DM policy is unrea-
sonably complex, then scripts-and-triggers is an infeasible 
way of authoring that policy. We can determine the small-
est decision tree that achieves performance reasonably 
close to the drama manager, and qualitatively consider 
whether it would be reasonable to hand-author it. Alter-
nately, we can start with a reasonable hand-authored policy 
for a small story world, and see how the complexity of 
required new additions scales as we add additional events 
and locations in the story world. 
 Ease of policy change. Second, if experiences can be 
tuned and altered easily by changing some DM parameters 
(e.g. the author decides the experience should be faster 
paced), and the equivalent changes in trigger-logic would 
require many complicated edits throughout the system, DM 
adds authorial leverage. DODM in particular uses a num-
ber of numerical values/weights/probabilities to define 
experience goals, which can be changed to re-weight crite-
ria in decisions throughout the story. Drama managers can 
also allow for changes such as adding or removing story 
goals in a planning formalism. If simple changes at those 
levels of authorship result in a significantly different script-
and-trigger-equivalent policy, DM effectively allows an 
author to re-script the original from a compact representa-
tion, or to easily create a set of variations on a given ex-
perience. 
 Variability of experiences. The first two leverage met-
rics are based on the relationship between the amount of 
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work and the quality of the work’s outcome.  This third 
measure of leverage is necessary to ensure that there is a 
variety of diverse experiences in addition to stories of great 
quality. It is necessary to consider frequency of variability 
because high quality stories are easily hand authored, al-
though difficult to author in large numbers. An AI system 
that guides the player on the same high quality experience 
every time could, according to the first two metrics, yield 
significant leverage, but would not offer significant lever-
age according to this third metric. In the subsequent sec-
tions we will demonstrate how using DODM simultane-
ously leads to higher quality and significant variation.   

Implementing Decision Trees with DODM 
We induced decision trees from example drama-managed 
story traces using the J48 algorithm implemented in Weka, 
a machine-learning software package.1 Each drama-
manager decision is made in the context of a partially 
completed story, so the training data is a set of (partial-
story, dm-action) pairs, generated by running the expecti-
max search-based drama manager to generate thousands of 
examples of its actions. Partial stories (the independent 
variable) are represented by a set of boolean flags indicat-
ing whether each plot point and DM action has happened 
thus far in this story, and, for each pair of plot points a and 
b, whether a preceded b if both happened. 
 The tree that results can be interpreted as a script-and-
trigger system. Each interior node, which splits on one of 
the boolean attributes, is a test of a flag. The path from a 
root node to a leaf passes through a number of such flag 
tests, and their conjunction is the trigger that activates the 
script, the leaf node that indicates which DM action to 
take. The tree format consolidates common tests to pro-
duce a compact (and inducible from data) representation of 
the total set of trigger conditions and the scripts they trig-
ger. A given story produces a number of partial story in-
stances, since each step of the story is a decision point for 
the drama manager. 
 The tree induced from the drama-management traces can 
be used as a drama-management policy, specifying the DM 
action (script) to take in the story states where action is 
needed (triggers). Decision trees of various sizes can be 
induced by varying the pruning parameters: a low degree 
of pruning will effectively memorize the training exam-
ples, while a high degree of pruning results in a small tree 
exhibiting more generalization (and thus more error) across 
the training examples.  
 Any of the policies—the actual DM policy or any of the 
decision trees—can be run with a simulated player to gen-
erate a histogram of how frequently experiences of various 
qualities occur. More successful drama management will 
increase the proportion of highly rated experiences and 
decrease that of lower-rated experiences.  
 Varying the degree of pruning allows us to see how 
much performance is sacrificed by limiting to a simple 
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script-and-trigger system; or alternately to see what level 
of script-and-trigger complexity is needed to achieve per-
formance similar to the drama manager.  The following 
subsections will evaluate the authorial leverage of a drama 
manager by the three performance measures discussed in 
this paper. 

Script and Trigger Equivalents for EMPath 
We performed our preliminary evaluations on EMPath, a 
Zelda-like adventure game [Sullivan, Chen, & Mateas, 
2008] that was developed to test DODM in a traditional 
game genre.  It is set in a 25-room dungeon and has, at 
most, 10 plot points that can possibly occur.  In addition to 
the game, there are 32 DM actions that DODM may 
choose to employ at various points in the story (33 DM 
actions when counting the choice to do nothing).  
 We ran DODM in this world to generate 2500 drama-
managed story traces, producing 22,000 instances of train-
ing data from which to induce a decision tree. To vary 
pruning, we varied the maximum terminal node size (num-
ber of examples captured by a terminal node), with a larger 
terminal node size resulting in smaller trees (less splitting 
on data).  

 
Figure 1. Story quality histogram of search, null, and decision 
tree policies. 
 
 The histogram above shows the performance of the 
drama manager in the EMPath story world, compared to 
the performance of a null policy (which always takes no 
DM actions – this is the un-drama-managed experience) 
and a number of trees at various levels of pruning. The tree 
sizes in the legend refer to the maximum terminal node 
sizes of the different trees. It is apparent that the perform-
ance of the smallest trees (greatest pruning), such as the 
one labeled 1000, performs only slightly better than the 
null policy, whereas the best match with the search-based 
policy (the actual DM policy) is found at moderately low 
levels of pruning (the “200” tree). In addition, the least-
pruned trees (e.g. 50) overfit to the particular runs in the 
training set, as we’d expect, resulting in worse generaliza-
tion on the test set, and thus do not capture the DM policy 
well either. 
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 Figures 2 and 3 show the highly pruned (1000) policy 
with 17 nodes, and the best performing (200) policy with 
70 nodes. 
 
 
 

 
 
 
 
 
 
 
Figure 2. The poorly evaluating decision tree (17 nodes). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The highest evaluating decision tree (70 nodes). 
 
Although this zoomed-out view gives only a general idea 
of the policies, the policy in Figure 3 is already clearly 
quite complex for such a small story world, while the more 
reasonable policy in Figure 2 doesn’t perform well. 

Figure 4 gives a zoomed-in view of part of the best-
performing tree, showing some of the equivalent script-
and-trigger logic that it captures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Zoomed in view of the 200 pruned tree. 
 
One trace through this segment specifies the following 
rule. If info_key_guard_BEFORE_get_key is false (i.e. 
either info_key_guard or get_key plot points haven’t hap-
pened, or the info_key_guard plot point happened second); 
and the DM action temp_deny_info_use_wax has not been 
used; and the DM action temp_deny_wax has not been 

used; and the plot point give_flute has happened; all con-
joined with any tests further up the tree; then take the DM 
action temp_deny_info_use_wax. This is specifying a se-
ries of exclusion tests (in which case other plot points 
would be appropriate), followed by a choice of what to do 
if all of them pass, depending on whether the flute has been 
given yet. Hundreds of these sorts of rules get automati-
cally generated; while they could all be authored by hand 
in principle, the fact that even in such a small story world it 
requires a tree of this size to reasonably approximate the 
DM’s performance gives some indication of the infeasibil-
ity of doing so. 

Ease of Expanding the EMPath world 
As a way of testing the ease of policy change (the second 
authorial leverage criterion), we created three versions of 
EMPath with increasing world complexity. Table 1 
summarizes the three game variants.  
 

 # plot points # DM actions # quests map size 

empath-small 10 33 3 25 

empath-med 14 47 5 64 

empath-large 18 62 6 64 

 
Table 1. Game policy variations. 
 
Each story variant is used to create its own decision-tree 
training data, by producing 1000 stories each.  The training 
data is built from the partial stories from each 1000-story 
set.  Story worlds that were bigger had larger data sets as a 
result (8780, 12594, and 16437 respectively).  

Recall that the second authorial leverage criterion is ease 
of policy change. Using DODM, to incorporate the logic 
for the new subquests into the game, all the author has to 
do is provide the DM with the new plot points and DM 
actions, and include the larger world map in the player 
model (see [Sullivan, Chen and Mateas 2009] for details on 
the player model). To change the policy for the script-and-
trigger-equivalent trees, the author would have to manually 
add and delete trigger conditions to account for the new 
content. Given our EMPath variants and the induced script-
and-trigger equivalent logic, we need a way of comparing 
the differences between trees in order to measure the ease 
(or difficulty) of changing one tree into another. As a sim-
ple of measure of this, we find a decision tree that best fits 
the search-based DODM performance for each EMPath 
variant (using the same techniques as described above), 
and compare the sizes of the trees. If the sizes of the trees 
vary significantly between EMPath variants, then there 
would be significant authorial difficulty in manually creat-
ing new script-and-trigger logic for each variant. Note that, 
even if the trees are the same size, there could be signifi-
cant differences between trees, differences that would best 
be captured with some version of edit distance. But tree 
size gives us a first approximation of this difference. 

Figure 5 graphs the node size of the best-fitting decision 
tree for each of the variants. There is a significant increase 
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the script-and-trigger-equivalent logic.   
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Approximated complexity for the most optimal decision 
tree policy. 
 

To determine whether, using the second criterion, 
DODM provides authorial leverage, we need to compare 
these hundreds of edits with the authoring work required 
using DODM. To include 8 additional plot points and 29 
drama manager actions, the author must describe each plot 
point and action to the DM. Plot points and DM actions are 
defined by a list of attribute/value pairs.  

Consider the get_sword plot point as an example of 
one of the 8 new plot points added to expand from empath-
small to empath-large.  

• get_sword 
• QUEST = sword 
• MOTIVATED_BY = {info_sword, info_loc_sword} 
• COORD = 6 0 

The quest attribute describes which quest the plot point 
is part of, the motivated_by attribute describes the list 
of plot points that should motivate, for the player, this plot 
point happening, while the coord attribute stores the ini-
tial map location at which this plot point will occur (initial 
location of the sword, which can potentially be moved 
around by drama management actions). When evaluating 
the quality of potential future sequences of plot points, the 
evaluation function will use the attribute values to deter-
mine the quality of a particular sequence; for example, the 
evaluation function would decrease the rating of a se-
quence in which info_sword and info_loc_sword 
don’t happen before get_sword, because the player ac-
quiring the sword is not motivated in that sequence.  
 Now consider give_player_sword, one of the 29 
drama management actions added to expand empath_small 
to empath_large.  

• give_player_sword 
• CAUSES = get_sword 
• MANIPULATION = 0.9 

This DM action can force the plot point get_sword to 
happen by making an NPC walk up and give the sword to 
the player (with appropriate dialog from the NPC). The 
manipulation attribute indicates how manipulative the 

player is likely to find this action (how rail-roaded the ac-
tion might make them feel). The value of 0.9 (1.0 is maxi-
mum) indicates that this is a strongly manipulative action.  
 In addition to defining plot points and drama manager 
actions, the author also defines an evaluation function, ex-
pressed as a linear weighted sum of evaluation features. An 
example of an evaluation feature is one that scores how 
motivated the events in a plot point sequence are, that is, 
how often, for each plot point in the sequence, its moti-
vated_by plot points happen earlier in the sequence. The 
author can tune the relative importance of the different 
features by adjusting the weights associated with each fea-
ture. Adjusting the weights of the evaluation features de-
termines characteristics for the overall quality metric used 
to evaluate the story. So, even without adding any addi-
tional plot points or DM moves, the author can adjust the 
experience purely by changing evaluation features or ad-
justing weights. Thus, another way to measure ease of pol-
icy change would be to learn decision trees for several dif-
ferent weightings and evaluation feature combinations, and 
measure how different these trees are from each other. In 
this paper, we only address policy change associated with 
adding new plot points and DM moves.  

Variability of Stories for EMPath 
The final measure for authorial leverage is in the variety of 
quality experiences. The simplest way to measure variety 
is to sum up the total of unique stories. Figure 6 shows the 
histogram for number of unique stories (out of 50,000 
simulated player runs) in the empath-small story world for 
trees of decreasing size, where the leftmost tree is the best 
fitting tree. The first thing to note is that the tree that best 
matches the DODM policy, the 137 tree, still produces 
over 6000 unique stories (unique sequences of plot points). 
Thus, DODM is not forcing a small number of stories to 
always occur. Second, note that as we move towards 
smaller trees (increased generalization), the number of 
unique stories grows (more than 14000 in the smallest 
tree). But we know from Figure 1 that smaller trees result 
in worse story-quality histograms. Thus, the higher script-
and-trigger complexity of the larger tree (the DM-
equivalent tree) is producing an increase in story quality 
while still supporting a wide-variety of experiences.  

 
Figure 6. Histogram for unique stories according to tree size. 
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Decision-tree policy issues 
Although decision trees are a nice way of automatically 
capturing the DM policy in a way that can be interpreted as 
a script-and-trigger system, there are a few difficulties with 
the policies they produce. The generalization that takes 
place in decision-tree induction can produce choices of 
actions that would not be permitted in a particular state. 
Since the decision tree learner doesn’t have access to inter-
nal constraints used by DODM, it may make unsafe gener-
alizations. Two instances where the decision trees pro-
duced invalid choices of DM action are: 1) taking causer 
DM actions that cause plot points which have already hap-
pened; and 2) not knowing that denier actions for critical 
plot points must be reenabled eventually. 
 These are in effect uncaptured additional complexities in 
a correct DM policy that a script-and-trigger system would 
need to deal with. An improvement to the decision-tree 
induction that might capture them would be to produce a 
number of negative examples of such disallowed choices 
of DM actions, and use a decision-tree induction algorithm 
that allows negative class examples. 

Conclusions and future work 
We proposed that a major open issue in the evaluation of 
drama managers is their authorial leverage: the degree of 
authorial control they provide over an interactive experi-
ence as compared to the complexity of the authoring in-
volved. Since authoring drama-manager-like interaction in 
stories is commonly done via scripts and triggers, we pro-
posed that one way to evaluate the authorial leverage a 
drama manager gives is to use decision trees to induce and 
examine a script-and-trigger equivalent form of a drama 
manager’s policy. We proposed three criteria with which to 
do the comparison: 1) examine the complexity of the in-
duced script-and-trigger representation; 2) consider the 
ease with which stories can be rebalanced or changed by 
changing DM parameters versus editing scripts and trig-
gers (in this paper, the changes studied involve scaling 
storyworlds); and 3) examine the variability of stories pro-
duced by a script-and-trigger system and a DM policy, e.g. 
the implied branching factor of the experience. 
 We presented results in inducing a script-and-trigger 
equivalent form of a DODM policy in a Zelda-like world, 
EMPath, and evaluated it by our first proposed criterion, 
showing that the resulting policies are quite complex to 
hand-author even in this small domain. Secondly, we 
showed three versions of EMPath that vary in size, and 
measured how the decision tree equivalents scaled with 
these changes. This showed that adding a few plot points to 
the story world had drastic increases in decision tree com-
plexities. Finally, we showed that using DODM leads to 
simultaneously higher quality and lots of variation, by ex-
amining the variety and frequency of unique stories in con-
junction with their story-quality evaluations.   

Three primary directions that future work should take 
are: evaluating other systems, developing further ways of 

investigating the performance measures, and making use of 
the learned script-and-trigger systems. The evaluation 
measures will need to be applied to other story systems in 
several story worlds, and ideally, would also compare 
DODM to other drama-management approaches using a 
similar evaluation of authorial leverage. The three ap-
proaches we took to evaluate DODM can be further re-
fined; for instance, performing a more rigorous statistical 
analysis or using the average branching factor to measure 
story variation. In addition to evaluating the authorial lev-
erage of drama management, the script-and-trigger systems 
demonstrated that decision tree policies were drastically 
faster at run time, although building the trees may take 
days to preprocess. Future work should examine how these 
learned script-and-trigger policies can be used at runtime 
as a “compiled” version of the optimization-based drama 
manager.  
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