

Evaluating the Authorial Leverage of Drama Management

Sherol Chen,1 Mark J. Nelson,1,2 Michael Mateas1

 1 Expressive Intelligence Studio
University of California, Santa Cruz
{sherol, michaelm}@soe.ucsc.edu

2 School of Interactive Computing
Georgia Institute of Technology

mnelson@cc.gatech.edu

Abstract
A drama manager (DM) monitors an interactive experience,
such as a computer game, and intervenes to shape the global
experience so that it satisfies the author’s expressive goals
without decreasing a player’s interactive agency. Most re-
search on drama management has proposed AI architectures
and provided abstract evaluations of their effectiveness; a
smaller body of work has also evaluated the effect of drama
management on player experience. Little attention has been
paid, however, to evaluating the authorial leverage provided
by a drama-management architecture: determining, for a
given architecture, the additional non-linear story complex-
ity a drama manager affords over traditional scripting meth-
ods. In this paper, we propose three criteria for evaluating
the authorial leverage of a DM: 1) the script-and-trigger
complexity of the DM story policy; 2) the degree of policy
change given changes to story elements; and 3) the average
story branching factor for DM policies versus script-and-
trigger policies for stories of equivalent quality. We apply
these criteria to declarative optimization-based drama man-
agement (DODM) by using decision tree learning to capture
equivalent trigger logic, and show that DODM does in fact
provide authorial leverage.

Introduction

Technology can expand the possibilities of narrative both
for those who experience and those who tell stories, in par-
ticular by making narrative be interactive. Authoring inter-
active narratives, however, has proven quite challenging in
practice. Narrative in games, although sharing some quali-
ties with non-interactive storytelling, delivers a highly in-
teractive experience, which requires new ways of ap-
proaching authoring. Traditional approaches to authoring
interactive stories in games involve a scripted and heavily
linear process, and extending this process to large stories
with complicated interactivity is difficult. Drama managers
provide an alternative approach, by allowing the author to
assume a system that knows something at run-time about
how to manage the story. Such approaches, however, are
difficult to evaluate from the perspective of authors look-
ing for reasons to use a drama manager rather than tradi-
tional authoring approaches.

Copyright © 2009, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

 Authorial leverage is the power a tool gives an author to
define a quality interactive experience in line with their
goals, relative to the tool’s authorial complexity. It has
been pointed out that the “burden of authoring high quality
dramatic experiences should not be increased because of
the use of a drama manager” [Roberts & Isbell, 2008], but
determining whether that is the case depends on determin-
ing both the complexity of an authoring approach and the
gains it provides.
 Previous work has studied how experience quality can
be improved by DODM [Weyhrauch, 1997]. This does not
directly imply that DODM provides an authorial benefit,
however. To do that, there needs to be some reason to be-
lieve that traditional authoring methods could not have
achieved the same results, or that they would have required
considerably more effort to do so.
 A way to get at that comparison is to look at the set of
traditional trigger-logic rules that would be equivalent to
what a drama manager is doing. We propose three criteria
for evaluating the authorial leverage of drama managers in
this manner: equivalent script-and-trigger complexity of
their policies, policy change complexity, and average
branching factor of their policies. We present preliminary
work applying these metrics to declarative optimization-
based drama management (DODM), by examining the
equivalent trigger-logic for a drama-manager policy as
captured by a decision-tree learner.

Drama Management
In this work, we focus on DODM, an approach to drama
management based on plot points, DM actions, and an
evaluation function [Weyhrauch, 1997].
 Plot points are important events that can occur in an ex-
perience. Different sequences of plot points define differ-
ent player trajectories through games or story worlds. Ex-
amples of plot points include a player gaining story infor-
mation or acquiring an important object. The plot points
are annotated with ordering constraints that capture the
physical limitations of the world, such as events in a
locked room not being possible until the player gets the
key. Plot points are also annotated with information such
as the plot point’s location or the subplot/quest it is part of.
 The evaluation function, given a total sequence of plot
points that occurred in the world, returns a “goodness”

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

136

measure for that sequence. This evaluation is a specific,
author-specified function that captures story or experience
goodness for a specific world. While an author can create
custom story features, the DODM framework provides a
set of additive features that are commonly useful in defin-
ing evaluation functions [e.g. Weyhrauch, 1997; Nelson &
Mateas, 2005].
 DM actions are actions the DM can take to intervene in
the unfolding experience. Actions can cause specific plot
points to happen, provide hints that make it more likely a
plot point will happen, deny a plot point so it cannot hap-
pen, or un-deny a previously denied plot point.
 When DODM is connected to a concrete game world,
the world informs the DM when the player has caused a
plot point to happen. The DM then decides whether to take
any actions, and tells the world to carry out that action.
 Given this model, the DM’s job is to choose actions (or
no action at all) after the occurrence of every plot point so
as to maximize the future goodness of the complete story.
This optimization is performed using game-tree search in
the space of plot points and DM actions, using expectimax
to backup story evaluations from complete sequences.

Related Work
Most related work on drama management is in proposing
AI architectures with abstract evaluations of their effec-
tiveness. A few projects have also been evaluated through
user tests and simulations: U-Director [Mott & Lester,
2006], PaSSAGE [Thue, et al. 2007], Anchorhead [Nelson
& Mateas. 2005], and EMPath [Sullivan, Chen, & Mateas,
2008]. U-Director was evaluated for run-time performance
as well quality of the experience with simulated users. The
PaSSAGE project was evaluated by 90 players to evaluate
the impact of its drama management model on player ex-
perience. Anchorhead, the first storyworld using DODM
created since Weyhrauch’s dissertation, evaluated DODM
using simulated players. EMPath, the first fully-playable
real-time game built using DODM was evaluated using
both simulated and real players, to verify that DODM can
indeed improve the quality of the player experience over
the un-drama-managed case. Note that all these evaluation
approaches focus on player experience, not on the authora-
bility of the drama management approaches. In this paper
we propose criteria for evaluating authorial leverage, and
apply this criteria to DODM.

Measuring Authorial Leverage
The evaluation of DODM thus far has shown that it can
improve the quality of the experience using simulated
players [Weyhrauch, 1997; Nelson et al, 2006; Nelson &
Mateas, 2008] and real players [Sullivan, Chen, & Mateas,
2008], and has established that the evaluation function can
correspond with expert evaluations of experience quality
[Weyhrauch, 1997]. None of this establishes the usefulness
of DODM for authors, however, if similarly impressive

results could have been achieved just as easily using tradi-
tional trigger-logic authoring techniques.

Script-and-trigger authoring and DM equivalents
Traditionally, interactive story experiences are authored
with sets of scripts and triggers: the author specifies par-
ticular events or world states that trigger scripts, which
then perform some sequence of actions in response. This
typically involves keeping track of various state flags such
as which items a player possesses, which NPCs they have
talked to, etc., and conditionally triggering actions based
on these state flags.
 One way to understand the operations of a DM is to gen-
erate script-and-trigger logic that encodes a policy equiva-
lent to the DM’s. We do that by generating a large set of
traces of the DM operating on a number of different sto-
ries, and then using a decision-tree learner to summarize
the DM’s operation. The internal nodes in the learned deci-
sion tree, which split on state values, correspond to the
tests that exist in triggers; the leaves, which are DM
moves, then correspond to scripts to execute. A particular
path from the root node to a leaf defines a script to execute
given the conjunction of the set of triggers along the path.

Evaluating DM via equivalents
We propose looking at the equivalent trigger-logic formu-
lations of DODM policies to establish the authorial lever-
age of DODM from three perspectives.
 Complexity of script-and-trigger equivalents. First, if
the script-and-trigger equivalent of a DM policy is unrea-
sonably complex, then scripts-and-triggers is an infeasible
way of authoring that policy. We can determine the small-
est decision tree that achieves performance reasonably
close to the drama manager, and qualitatively consider
whether it would be reasonable to hand-author it. Alter-
nately, we can start with a reasonable hand-authored policy
for a small story world, and see how the complexity of
required new additions scales as we add additional events
and locations in the story world.
 Ease of policy change. Second, if experiences can be
tuned and altered easily by changing some DM parameters
(e.g. the author decides the experience should be faster
paced), and the equivalent changes in trigger-logic would
require many complicated edits throughout the system, DM
adds authorial leverage. DODM in particular uses a num-
ber of numerical values/weights/probabilities to define
experience goals, which can be changed to re-weight crite-
ria in decisions throughout the story. Drama managers can
also allow for changes such as adding or removing story
goals in a planning formalism. If simple changes at those
levels of authorship result in a significantly different script-
and-trigger-equivalent policy, DM effectively allows an
author to re-script the original from a compact representa-
tion, or to easily create a set of variations on a given ex-
perience.
 Variability of experiences. The first two leverage met-
rics are based on the relationship between the amount of

137

work and the quality of the work’s outcome. This third
measure of leverage is necessary to ensure that there is a
variety of diverse experiences in addition to stories of great
quality. It is necessary to consider frequency of variability
because high quality stories are easily hand authored, al-
though difficult to author in large numbers. An AI system
that guides the player on the same high quality experience
every time could, according to the first two metrics, yield
significant leverage, but would not offer significant lever-
age according to this third metric. In the subsequent sec-
tions we will demonstrate how using DODM simultane-
ously leads to higher quality and significant variation.

Implementing Decision Trees with DODM
We induced decision trees from example drama-managed
story traces using the J48 algorithm implemented in Weka,
a machine-learning software package.1 Each drama-
manager decision is made in the context of a partially
completed story, so the training data is a set of (partial-
story, dm-action) pairs, generated by running the expecti-
max search-based drama manager to generate thousands of
examples of its actions. Partial stories (the independent
variable) are represented by a set of boolean flags indicat-
ing whether each plot point and DM action has happened
thus far in this story, and, for each pair of plot points a and
b, whether a preceded b if both happened.
 The tree that results can be interpreted as a script-and-
trigger system. Each interior node, which splits on one of
the boolean attributes, is a test of a flag. The path from a
root node to a leaf passes through a number of such flag
tests, and their conjunction is the trigger that activates the
script, the leaf node that indicates which DM action to
take. The tree format consolidates common tests to pro-
duce a compact (and inducible from data) representation of
the total set of trigger conditions and the scripts they trig-
ger. A given story produces a number of partial story in-
stances, since each step of the story is a decision point for
the drama manager.
 The tree induced from the drama-management traces can
be used as a drama-management policy, specifying the DM
action (script) to take in the story states where action is
needed (triggers). Decision trees of various sizes can be
induced by varying the pruning parameters: a low degree
of pruning will effectively memorize the training exam-
ples, while a high degree of pruning results in a small tree
exhibiting more generalization (and thus more error) across
the training examples.
 Any of the policies—the actual DM policy or any of the
decision trees—can be run with a simulated player to gen-
erate a histogram of how frequently experiences of various
qualities occur. More successful drama management will
increase the proportion of highly rated experiences and
decrease that of lower-rated experiences.
 Varying the degree of pruning allows us to see how
much performance is sacrificed by limiting to a simple

1 http://www.cs.waikato.ac.nz/ml/weka/

script-and-trigger system; or alternately to see what level
of script-and-trigger complexity is needed to achieve per-
formance similar to the drama manager. The following
subsections will evaluate the authorial leverage of a drama
manager by the three performance measures discussed in
this paper.

Script and Trigger Equivalents for EMPath
We performed our preliminary evaluations on EMPath, a
Zelda-like adventure game [Sullivan, Chen, & Mateas,
2008] that was developed to test DODM in a traditional
game genre. It is set in a 25-room dungeon and has, at
most, 10 plot points that can possibly occur. In addition to
the game, there are 32 DM actions that DODM may
choose to employ at various points in the story (33 DM
actions when counting the choice to do nothing).
 We ran DODM in this world to generate 2500 drama-
managed story traces, producing 22,000 instances of train-
ing data from which to induce a decision tree. To vary
pruning, we varied the maximum terminal node size (num-
ber of examples captured by a terminal node), with a larger
terminal node size resulting in smaller trees (less splitting
on data).

Figure 1. Story quality histogram of search, null, and decision
tree policies.

 The histogram above shows the performance of the
drama manager in the EMPath story world, compared to
the performance of a null policy (which always takes no
DM actions – this is the un-drama-managed experience)
and a number of trees at various levels of pruning. The tree
sizes in the legend refer to the maximum terminal node
sizes of the different trees. It is apparent that the perform-
ance of the smallest trees (greatest pruning), such as the
one labeled 1000, performs only slightly better than the
null policy, whereas the best match with the search-based
policy (the actual DM policy) is found at moderately low
levels of pruning (the “200” tree). In addition, the least-
pruned trees (e.g. 50) overfit to the particular runs in the
training set, as we’d expect, resulting in worse generaliza-
tion on the test set, and thus do not capture the DM policy
well either.

Story Quality Histogram

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.25 0.35 0.45 0.55 0.65 0.75 0.85

Quality

O
cc

u
rr

an
ce

s

50 tree

175 tree

200 tree

300 tree

1000 tree

null

search

138

 Figures 2 and 3 show the highly pruned (1000) policy
with 17 nodes, and the best performing (200) policy with
70 nodes.

Figure 2. The poorly evaluating decision tree (17 nodes).

Figure 3. The highest evaluating decision tree (70 nodes).

Although this zoomed-out view gives only a general idea
of the policies, the policy in Figure 3 is already clearly
quite complex for such a small story world, while the more
reasonable policy in Figure 2 doesn’t perform well.

Figure 4 gives a zoomed-in view of part of the best-
performing tree, showing some of the equivalent script-
and-trigger logic that it captures.

Figure 4. Zoomed in view of the 200 pruned tree.

One trace through this segment specifies the following
rule. If info_key_guard_BEFORE_get_key is false (i.e.
either info_key_guard or get_key plot points haven’t hap-
pened, or the info_key_guard plot point happened second);
and the DM action temp_deny_info_use_wax has not been
used; and the DM action temp_deny_wax has not been

used; and the plot point give_flute has happened; all con-
joined with any tests further up the tree; then take the DM
action temp_deny_info_use_wax. This is specifying a se-
ries of exclusion tests (in which case other plot points
would be appropriate), followed by a choice of what to do
if all of them pass, depending on whether the flute has been
given yet. Hundreds of these sorts of rules get automati-
cally generated; while they could all be authored by hand
in principle, the fact that even in such a small story world it
requires a tree of this size to reasonably approximate the
DM’s performance gives some indication of the infeasibil-
ity of doing so.

Ease of Expanding the EMPath world
As a way of testing the ease of policy change (the second
authorial leverage criterion), we created three versions of
EMPath with increasing world complexity. Table 1
summarizes the three game variants.

 # plot points # DM actions # quests map size

empath-small 10 33 3 25

empath-med 14 47 5 64

empath-large 18 62 6 64

Table 1. Game policy variations.

Each story variant is used to create its own decision-tree
training data, by producing 1000 stories each. The training
data is built from the partial stories from each 1000-story
set. Story worlds that were bigger had larger data sets as a
result (8780, 12594, and 16437 respectively).

Recall that the second authorial leverage criterion is ease
of policy change. Using DODM, to incorporate the logic
for the new subquests into the game, all the author has to
do is provide the DM with the new plot points and DM
actions, and include the larger world map in the player
model (see [Sullivan, Chen and Mateas 2009] for details on
the player model). To change the policy for the script-and-
trigger-equivalent trees, the author would have to manually
add and delete trigger conditions to account for the new
content. Given our EMPath variants and the induced script-
and-trigger equivalent logic, we need a way of comparing
the differences between trees in order to measure the ease
(or difficulty) of changing one tree into another. As a sim-
ple of measure of this, we find a decision tree that best fits
the search-based DODM performance for each EMPath
variant (using the same techniques as described above),
and compare the sizes of the trees. If the sizes of the trees
vary significantly between EMPath variants, then there
would be significant authorial difficulty in manually creat-
ing new script-and-trigger logic for each variant. Note that,
even if the trees are the same size, there could be signifi-
cant differences between trees, differences that would best
be captured with some version of edit distance. But tree
size gives us a first approximation of this difference.

Figure 5 graphs the node size of the best-fitting decision
tree for each of the variants. There is a significant increase

139

Approximate Decision-Tree Sizes

0

100

200

300

400

500

600

700

800

empath-small empath-med empath-large

story world size

D
ec

is
io

n
 T

re
e

S
iz

e

in the node size of the decision tree from empath-small to
empath-med and from med to large. Tree sizes grow sig-
nificantly from empath-small to empath-large, meaning
that, to expand the game from empath-small to empath-
large, the author would have to make hundreds of edits to
the script-and-trigger-equivalent logic.

Figure 5. Approximated complexity for the most optimal decision
tree policy.

To determine whether, using the second criterion,
DODM provides authorial leverage, we need to compare
these hundreds of edits with the authoring work required
using DODM. To include 8 additional plot points and 29
drama manager actions, the author must describe each plot
point and action to the DM. Plot points and DM actions are
defined by a list of attribute/value pairs.

Consider the get_sword plot point as an example of
one of the 8 new plot points added to expand from empath-
small to empath-large.

• get_sword
• QUEST = sword
• MOTIVATED_BY = {info_sword, info_loc_sword}
• COORD = 6 0

The quest attribute describes which quest the plot point
is part of, the motivated_by attribute describes the list
of plot points that should motivate, for the player, this plot
point happening, while the coord attribute stores the ini-
tial map location at which this plot point will occur (initial
location of the sword, which can potentially be moved
around by drama management actions). When evaluating
the quality of potential future sequences of plot points, the
evaluation function will use the attribute values to deter-
mine the quality of a particular sequence; for example, the
evaluation function would decrease the rating of a se-
quence in which info_sword and info_loc_sword
don’t happen before get_sword, because the player ac-
quiring the sword is not motivated in that sequence.
 Now consider give_player_sword, one of the 29
drama management actions added to expand empath_small
to empath_large.

• give_player_sword
• CAUSES = get_sword
• MANIPULATION = 0.9

This DM action can force the plot point get_sword to
happen by making an NPC walk up and give the sword to
the player (with appropriate dialog from the NPC). The
manipulation attribute indicates how manipulative the

player is likely to find this action (how rail-roaded the ac-
tion might make them feel). The value of 0.9 (1.0 is maxi-
mum) indicates that this is a strongly manipulative action.
 In addition to defining plot points and drama manager
actions, the author also defines an evaluation function, ex-
pressed as a linear weighted sum of evaluation features. An
example of an evaluation feature is one that scores how
motivated the events in a plot point sequence are, that is,
how often, for each plot point in the sequence, its moti-
vated_by plot points happen earlier in the sequence. The
author can tune the relative importance of the different
features by adjusting the weights associated with each fea-
ture. Adjusting the weights of the evaluation features de-
termines characteristics for the overall quality metric used
to evaluate the story. So, even without adding any addi-
tional plot points or DM moves, the author can adjust the
experience purely by changing evaluation features or ad-
justing weights. Thus, another way to measure ease of pol-
icy change would be to learn decision trees for several dif-
ferent weightings and evaluation feature combinations, and
measure how different these trees are from each other. In
this paper, we only address policy change associated with
adding new plot points and DM moves.

Variability of Stories for EMPath
The final measure for authorial leverage is in the variety of
quality experiences. The simplest way to measure variety
is to sum up the total of unique stories. Figure 6 shows the
histogram for number of unique stories (out of 50,000
simulated player runs) in the empath-small story world for
trees of decreasing size, where the leftmost tree is the best
fitting tree. The first thing to note is that the tree that best
matches the DODM policy, the 137 tree, still produces
over 6000 unique stories (unique sequences of plot points).
Thus, DODM is not forcing a small number of stories to
always occur. Second, note that as we move towards
smaller trees (increased generalization), the number of
unique stories grows (more than 14000 in the smallest
tree). But we know from Figure 1 that smaller trees result
in worse story-quality histograms. Thus, the higher script-
and-trigger complexity of the larger tree (the DM-
equivalent tree) is producing an increase in story quality
while still supporting a wide-variety of experiences.

Figure 6. Histogram for unique stories according to tree size.

0
2000
4000
6000
8000

10000
12000
14000
16000

137 tree size

111 tree size

87 tree size

71 tree size

67 tree size

61 tree size

51 tree size

49 tree size

33 tree size

140

Decision-tree policy issues
Although decision trees are a nice way of automatically
capturing the DM policy in a way that can be interpreted as
a script-and-trigger system, there are a few difficulties with
the policies they produce. The generalization that takes
place in decision-tree induction can produce choices of
actions that would not be permitted in a particular state.
Since the decision tree learner doesn’t have access to inter-
nal constraints used by DODM, it may make unsafe gener-
alizations. Two instances where the decision trees pro-
duced invalid choices of DM action are: 1) taking causer
DM actions that cause plot points which have already hap-
pened; and 2) not knowing that denier actions for critical
plot points must be reenabled eventually.
 These are in effect uncaptured additional complexities in
a correct DM policy that a script-and-trigger system would
need to deal with. An improvement to the decision-tree
induction that might capture them would be to produce a
number of negative examples of such disallowed choices
of DM actions, and use a decision-tree induction algorithm
that allows negative class examples.

Conclusions and future work
We proposed that a major open issue in the evaluation of
drama managers is their authorial leverage: the degree of
authorial control they provide over an interactive experi-
ence as compared to the complexity of the authoring in-
volved. Since authoring drama-manager-like interaction in
stories is commonly done via scripts and triggers, we pro-
posed that one way to evaluate the authorial leverage a
drama manager gives is to use decision trees to induce and
examine a script-and-trigger equivalent form of a drama
manager’s policy. We proposed three criteria with which to
do the comparison: 1) examine the complexity of the in-
duced script-and-trigger representation; 2) consider the
ease with which stories can be rebalanced or changed by
changing DM parameters versus editing scripts and trig-
gers (in this paper, the changes studied involve scaling
storyworlds); and 3) examine the variability of stories pro-
duced by a script-and-trigger system and a DM policy, e.g.
the implied branching factor of the experience.
 We presented results in inducing a script-and-trigger
equivalent form of a DODM policy in a Zelda-like world,
EMPath, and evaluated it by our first proposed criterion,
showing that the resulting policies are quite complex to
hand-author even in this small domain. Secondly, we
showed three versions of EMPath that vary in size, and
measured how the decision tree equivalents scaled with
these changes. This showed that adding a few plot points to
the story world had drastic increases in decision tree com-
plexities. Finally, we showed that using DODM leads to
simultaneously higher quality and lots of variation, by ex-
amining the variety and frequency of unique stories in con-
junction with their story-quality evaluations.

Three primary directions that future work should take
are: evaluating other systems, developing further ways of

investigating the performance measures, and making use of
the learned script-and-trigger systems. The evaluation
measures will need to be applied to other story systems in
several story worlds, and ideally, would also compare
DODM to other drama-management approaches using a
similar evaluation of authorial leverage. The three ap-
proaches we took to evaluate DODM can be further re-
fined; for instance, performing a more rigorous statistical
analysis or using the average branching factor to measure
story variation. In addition to evaluating the authorial lev-
erage of drama management, the script-and-trigger systems
demonstrated that decision tree policies were drastically
faster at run time, although building the trees may take
days to preprocess. Future work should examine how these
learned script-and-trigger policies can be used at runtime
as a “compiled” version of the optimization-based drama
manager.

References
Magerko, B. 2007. A comparative analysis of story representa-

tions for interactive narrative systems. Proceedings of AIIDE
2007.

Mott, B. W. and Lester, J.C. 2006. U-director: a decision-
theoretic narrative planning architecture for storytelling envi-
ronments. Proceedings of AAMAS 2006.

Nelson, M.J. and Mateas, M. 2005. Search-based drama man-
agement in the interactive fiction Anchorhead. Proceedings of
AIIDE 2005.

Nelson, M.J. and Mateas, M. 2008 Another look at search-based
drama management. Proceedings of AAAI 2008.

Nelson, M.J. and Roberts, D.L. and Isbell Jr, C.L. and Mateas, M.
2006. Reinforcement learning for declarative optimization-
based drama management. Proceedings of AAMAS 2006.

Roberts, D.L. and Isbell, C.L. 2008. A survey and qualitative
analysis of recent advances in drama management. Interna-
tional Transactions on Systems Science and Applications 4(2).

Sullivan, A., Chen, S., and Mateas, M. From Abstraction to Real-
ity: Integrating Drama Management into a Playable Game Ex-
perience. In Proceeding of the AAAI 2009 Spring Symposium
on Interactive Narrative Technologies II, AAAI Press, 2009.

Sullivan, A., Chen, S., and Mateas, M. 2008. Integrating drama
management into an adventure game. Proceedings of AIIDE
2008.

Thue, D., Bulitko, B., Spetch, M., and Wasylishen, E. 2007.
 Learning Player Preferences to Inform Delayed Authoring. In
Proceedings of the AAAI 2007 Fall Symposium on Intelligent
Narrative Technologies.

Weyhrauch, P. 1997. Guiding Interactive Drama. PhD
dissertation, Carnegie Mellon University.

141

	AIIDE09
	Contents
	Index
	AAAI Website

