

Mixed-Initiative Approaches to
On-Device Mobile Game Design

Abstract
Playing casual games is a wildly popular activity on
smartphones. However, designing casual games is done
by a smaller group of people, usually on desktop com-
puters, using professional development tools. Our goal
is to bring these activities closer together, in terms of
who does them and how they do them. Our Gamika
Technology platform is a 2D physics-based mobile
game design environment. It comprises a 284-
dimensional parametric design space, and poses mobile
game design as the problem of navigating this space.
We have built three mobile apps thus far to experiment
with on-device, mixed-initiative navigation of the
Gamika design space and some of its subspaces. We
describe these apps here in terms of the initiatives that
go into making a game with them, and how these are
split between people and underlying AI software. Our
overall goal is to democratise game design, so that an-
yone and everyone can make casual games directly on
their mobile phones or tablets.

Author Keywords
Mobile games; mixed-initiative interfaces; automated
game design; automated playtesting; design spaces.

ACM Classification Keywords
H.5.m. Information interfaces and presentation: Miscel-
laneous

Copyright © 2017 for this paper is held by the author(s).
Proceedings of MICI 2017: CHI Workshop on Mixed-Initiative Creative
Interfaces

Mark J. Nelson
Simon Colton
Edward J. Powley
Swen E. Gaudl
Peter Ivey
Rob Saunders
Blanca Pérez Ferrer
Michael Cook

The MetaMakers Institute
Falmouth University
Penryn, Cornwall, UK
metamakersinstitute.com

Introduction
At The MetaMakers Institute and its associated spinoff
company MetaMakers Ltd. (metamakersinstitute.com),
we are building apps for on-device, mixed-initiative
design of games for mobile devices (smartphones and
tablets). We explain here our overall approach in build-
ing the Gamika Technology platform that provides the
basis for our work, and three apps built on that plat-
form: Cillr, Wevva and No Second Chance.

Our goal is to allow users to create mobile games di-
rectly on the devices that they play these games on.
Today, many people play casual games, but a much
smaller number of people design such apps, and they
tend to do so on traditional computers, using environ-
ments such as Unity, XCode or Android Studio that are
entirely dissimilar to the context in which games are
played (and much less accessible).

This goal of on-device creation is why we are building
mixed-initiative, co-creative design tools [5]. On-device
design of mobile games must balance two issues: giv-
ing users enough control to feel ownership of their out-
put, but automating enough aspects of the design exer-
cise so that making games on a smartphone feels like
an enjoyable, empowering exploration of design possi-
bilities, not cumbersome small-screen programming.
Hence our goals are more aligned with the genre of
creative apps dubbed “casual creators” [2] than with
visual-programming tools.

Our approach begins by parameterising 2D physics-
based games. The basis of the Gamika Technology plat-
form is a 2D game engine parameterised by 284 fea-
tures that we have identified as core to a diverse range
of casual games. This set includes parameters control-

ling the physics engine, player interactions and scor-
ing/win-conditions. Physics parameters expose common
features of a 2D physics engine: object spawn
rates/locations, collision responses, attractive/repulsive
forces, etc. Interaction parameters specify how players
interact with the physics world, such as when and how
objects respond to the player tapping or dragging on
the screen. Scoring and win-condition parameters spec-
ify how events impact the game outcome (the more
narrowly conceived “rules” of the game). A more de-
tailed parameter overview is given in [4, Section III].

Games for the Gamika platform are encoded in 284-
parameter chromosomes (the term is borrowed from
evolutionary algorithms, as automated game genera-
tion is a goal), augmented with data such as graphical
and sound assets. Given a chromosome, the Gamika
platform can run the game via an interpreter that al-
lows run-time changes to the game specifications (see
Fig. 1 for a few examples).

Cillr: Navigating the full design space
Given the Gamika Technology platform, the problem of
on-device navigation of a high-dimensional game-
design space is still far from trivial. But compared to
the open-ended problem of full game design, we be-
lieve it serves as a more suitable starting point for the
affordances of mobile devices.

Equally importantly, design spaces can be both manual-
ly and automatically navigated, allowing for mixed-
initiative design. We are working on both interface- and
automation-oriented solutions to on-device design-
space navigation, and experimenting with using the two
together. Cillr, our in-house app for building Gamika
games (Fig. 2), implements baseline versions of both.

Figure 1: Four Gamika games

Figure 2: Cillr design panels

The simplest way of manually navigating a 284-
dimensional design space to give the user 284 sliders,
with which they can set each parameter. While simplis-
tic approach, this does work fairly effectively in Cillr.
The 284 sliders are grouped into categories with related
functionalities to make them more discoverable
(spawning-related sliders, collision-related, etc.).

The simplest way of automatically navigating a large
parameter space is to randomise the parameters. How-
ever, we have found that this produces too low a yield
of playable games, and hence Cillr mutates subsets of
parameters from existing games instead. Randomly
mutating multiple sets to produce a new random game,
and then trying to figure out what it is, can be a fun
interaction loop. If you aren't a researcher interested in
design spaces, however, the proportion of playable
games remains too low for the mutation approach in
Cillr to be ready for end-user consumption.

Besides producing Gamika chromosomes (both manual-
ly and with randomisation), Cillr includes editing tools
for graphical elements such as sprites, level layout, and
lighting, so complete games can be produced, including
games with level progressions and multiple levels of
difficulty. We have used the interface to produce clones
of classic games like frogger, asteroids and space in-
vaders, as well as a variety of novel casual games (a
narrated set of design sessions is reported in [1]).

We do not, of course, claim that an on-device mobile
game design tool with 284 sliders and parameter ran-
domisation is the solution to the problem of democra-
tising game design. But as an initial baseline, Cillr is
perfectly usable, at least by experts. Its main drawback
is that it is complicated to navigate, and requires some

time hunting for which slider to change to make some-
thing specific happen. Furthermore, even after having
found the desired parameter, it can be difficult to un-
derstand why the game didn’t change as expected.

In a preliminary user test with game-design under-
graduate students, we found them somewhat frustrated
by the experience of using Cillr to make games. Inter-
face complexity was one issue, but more importantly,
the difficulty of understanding the high-dimensional
design space made it hard for these initial testers to
grasp what they wanted to do in the app, and how they
would begin to do it. Therefore, rather than focus ini-
tially on improving Cillr’s interface, we have instead
focused on producing design tools for more cohesive,
lower-dimensional design subspaces, still on top of the
overall Gamika Technology platform, but not exposing
the entire design space at once.

Carving out cohesive subspaces
The next phase of our research has looked at restricting
the larger Gamika design space to more cohesive sub-
spaces, which exposes more comprehensible on-device
design spaces by specialising interfaces and automating
generative aspects to navigate the subspace.

Despite all games being 2D and physics-based, the
Gamika space is heterogeneous, with very different
kinds of games available within its parameters; some
puzzle-like, others meditative, others arcade-style ac-
tion, etc. Cohesive subspaces share enough features
such that navigating the design space feels more akin
to designing game levels, or game variants, with more
understandable relationships between parameter
changes and changes in gameplay behaviour (though
often still with complex and emergent aspects).

Once we've identified a design subspace, the research
question then becomes: given this design subspace,
can we understand its space of variation well enough to
build user-interface and generative components that
match with its salient features, and employ those to
build an enjoyable, mixed-initiative app for designing
(and playing) games or levels in that subspace?

Below, we describe the first two subspaces we’ve inves-
tigated, and the corresponding mobile game-design
apps, namely Wevva and No Second Chance.

Wevva
Using Cillr, we made a relatively addictive four-in-a-row
game called Let It Snow, where snow and rain pour
down from the top of the screen (as white and blue
balls respectively). When four or more white balls clus-
ter together, they explode and the player gains a point
for each in the cluster. Each white ball that explodes is
replaced by a new one spawned at the top, with a max-
imum of 20 on screen at any one time. Likewise with
blue balls, except the player loses points for them.
Players can interact with the game by tapping blue balls
to explode them, losing one point in doing so.

While the game rules are straightforward, we have
found it to be difficult and require puzzle-solving strat-
egies as well as quick reactions. There is a grid struc-
ture which collates the balls into bins, and the best way
to play the game involves trapping the blue balls in
groups of twos and threes at the bottom, while the
whites are exposed and are continually refreshed
through cluster explosions. Occasionally, when all blues
are trapped in small clusters, only whites will spawn,
which is akin to snowing (hence the game’s name) and
is a particularly pleasing moment to aim for.

We used Cillr to produce three variations of Let it Snow
called Rain Rain, Jack Frost and Slush Slosh, each re-
quiring different tactics and skills. These winter games
will be paired with games representing additional sea-
sons, for release as an iOS game, Wevva (Fig. 3). This
app further includes two aspects that are not common
in casual games: (a) an AI player for each game that
can assist novice players, and (b) a design screen ena-
bling players to generate levels in a semi-random way,
and tweak them to get balanced variations. The AI
player appears on-screen as a gloved hand that taps
the blue balls to keep clusters of four from forming
(Fig. 3, bottom right), implementing one part of a win-
ning strategy. A slider lets the player change the level
of AI assistance. At 50%, it feels like having an in-
game partner helping out. At 100%, the game is quite
different, as the AI player takes care of one aspect of
the game (avoiding losing points), freeing the player to
concentrate purely on gaining points.

The design screen (Fig. 4) exposes the following ele-
ments of the game design to the player: (a) the sizes
at which clusters of balls explode (b) the scores at-
tached to clusters exploding and the player tapping (c)
the size of the balls (d) the maximum number of balls
of each type allowed (e) the design of the grid, (f)
physical properties of the environment, namely bounci-
ness and noise, (g) spawning regions for both types of
balls, and (h) what happens when the player taps the
balls – both actions and scoring consequences.

There is a random generation button which will set the-
se parameters in a varied way, but designed so that the
clustering explodes are balanced in terms of expected
score. We achieved this by running online simulations
of novice players and recording the number of times

Figure 3: Wevva rules (top) and
gameplay (bottom)

Figure 4: Wevva design panels

that clusters of each size and type occurred. Initial ex-
periments with the design screen have indicated that
the space exposed by the above parameters, while
vast, does not contain hugely varied game types. How-
ever, we have used it to make games which differ sub-
stantially from the four preset games, e.g., involving
juggling balls, or trapping and tapping them, etc.

No Second Chance
Again using Cillr, we designed a game of patience and
concentration, Pendulands. Here, balls move in a pen-
dulum-type motion and annihilate each other if they
collide; the player must catch five of them by hovering
under them with a large round target until they stick.

By varying parameters within this theme, we discov-
ered that a whole set of Pendulands variants (or levels)
can be created. The fixed elements defining this sub-
space of Gamika games are: the player always controls
the target by dragging, and must catch five balls on the
target. Within these parameters, very different types of
challenges can be created (see Fig. 5 for examples).

No Second Chance is our third app, built around this
space of games. The name comes from a meta-game
mechanic: players can send games to each other in
such a way that they are deleted if the receiver doesn’t
beat the game on first playing (in five minutes). This
emphasises the “disposable” nature of games in a gen-
erative space, where part of the challenge is exploring
the space of games and figuring out how each one
works when first encountering it.

As with Wevva, a design screen (Fig. 6, top) lets play-
ers make new No Second Chance games. It is laid out
as a hierarchical menu, with submenus allowing visual

style and a variety of physics parameters to be
changed. Since what is fixed about No Second Chance
games is the control and scoring mechanism, new
games are made by varying physics, spawning and
scoring options, which can produce very different game
dynamics and mechanics.

To demonstrate the types of games that can be pro-
duced (and to provide an initial challenge), the app
comes with 100 games we designed using this inter-
face, which we’ve categorised into three primary types
of challenges: skill games, where the primary challenge
is dexterity, ingenuity games, where the primary chal-
lenge is figuring out a specific trick or strategy, and
patience games, which involve waiting for the right sit-
uation to arise and capitalising on it accordingly.

The generation button creates a new game via an evo-
lutionary process. In particular, pairs of existing games’
chromosomes are randomly crossed over, then filtered
using static heuristics to reject clearly bad candidates.
The first four candidates that pass the filter are auto-
playtested on the device in a split-screen view (Fig. 6,
bottom) that plays them at 8x speed for 5 seconds, the
equivalent of 40 seconds of game time. We want
games to be playable but not too easy, so the app
chooses the game that the playtester was able to catch
the most balls on, without being able to catch all five.
(This split-screen visualisation of playtesting isn’t strict-
ly necessary, but we are exploring the entertainment
value of “Hollywood AI” that visually externalizes to
users what the apps’ AI components are doing.)

We have been conducting playtests with the beta app
to improve both the design interface and generator. A
series of playtests in a local school (Camborne Science

Figure 5: No Second Chance

Figure 6: Design interface (top)
and auto-playtester (bottom)

and International Academy) have been particularly
helpful, as the students have proven adept at master-
ing the app and providing useful suggestions. Taking a
more explicitly learning-technology turn, since game
design in No Second Chance is essentially modification
of physics parameters to produce new types of game-
play dynamics, we have also written a series of com-
panion lessons that introduce game design and basic
physics through No Second Chance design exercises.

Conclusions and future work
Our goal is to democratise mobile game design by
building on-device design tools, so players can design
new games in the same setting in which they play
them. Our view is that doing so requires building tools
for mixed-initiative navigation of design spaces, where
player/designers have control over their designs but
also enjoy the benefits of automated and semi-
automated exploration of these design spaces.

To summarise our design strategy: (a) The Gamika
Technology platform parameterises game design so
that it becomes navigation of design possibilities rather
than programming (b) we carve out coherent design-
space subsets in which the relationship of parameter
changes and game design is more intuitive, and (c) we
build mixed-initiative apps mapping design interfaces,
automated game playtesters, and game generators
onto each subspace. Our first two apps built on such
subsets, Wevva and No Second Chance, are discussed
in this paper, as is Cillr, an internal prototype app that
targets the entire Gamika design space.

Modular, reusable automated playtesters are a compo-
nent worth elaborating on. They take initiative in vary-
ing ways: as evaluators during game generation (in No

Second Chance), as AI assistant players (in Wevva), as
fixers for broken player-designed games [4], and even
as performers in standalone art installations in which
the autoplayer both designs and plays new games (as
per the installation called I Create, You Destroy shown
at the first Arts as Games/Games As Arts festival).
Since the auto-playtesters serve multiple roles, and
often need to play in a way that is readable by users,
we currently handcraft them out of modular heuristics
in each domain, rather than using off-the-shelf but
black-box general game playing algorithms such as
MCTS or deep learning. We are interested, however, in
automatically inferring these kinds of modular, readable
heuristics, along the lines of [3].

Acknowledgements
This work is funded by EC FP7 grant 621403 (ERA
Chair: Games Research Opportunities). We are grateful
for the feedback provided by our alpha/beta testers.

References
1. Simon Colton, Mark J. Nelson, Rob Saunders, Ed-

ward J. Powley, Swen Gaudl, Michael Cook. 2016.
Towards a computational reading of emergence in
experimental game design. In Proc. CCGW 2016.

2. Kate Compton and Michael Mateas. 2015. Casual
creators. In Proc. ICCC 2015, 228-235.

3. Fernando de Mesentier Silva, Aaron Isaksen, Julian
Togelius, Andy Nealen. 2016. Generating heuristics
for novice players. In Proc. CIG 2016, 158-165.

4. Edward J. Powley, Simon Colton, Swen Gaudl, Rob
Saunders, Mark J. Nelson. 2016. Semi-automated
level design via auto-playtesting for handheld cas-
ual game creation. In Proc. CIG 2016, 372-379.

5. Georgios N. Yannakakis, Antonios Liapis, Constan-
tine Alexopoulos. 2014. Mixed-initiative co-
creativity. In Proc. FDG 2014.

